Properties

Label 489.2.q
Level 489489
Weight 22
Character orbit 489.q
Rep. character χ489(4,)\chi_{489}(4,\cdot)
Character field Q(ζ81)\Q(\zeta_{81})
Dimension 14581458
Newform subspaces 22
Sturm bound 109109
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 489=3163 489 = 3 \cdot 163
Weight: k k == 2 2
Character orbit: [χ][\chi] == 489.q (of order 8181 and degree 5454)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 163 163
Character field: Q(ζ81)\Q(\zeta_{81})
Newform subspaces: 2 2
Sturm bound: 109109
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(489,[χ])M_{2}(489, [\chi]).

Total New Old
Modular forms 3078 1458 1620
Cusp forms 2862 1458 1404
Eisenstein series 216 0 216

Trace form

1458q54q2354q29216q32216q37216q46216q48108q49108q56108q6254q63594q70108q7154q73594q74162q80216q91+162q98+O(q100) 1458 q - 54 q^{23} - 54 q^{29} - 216 q^{32} - 216 q^{37} - 216 q^{46} - 216 q^{48} - 108 q^{49} - 108 q^{56} - 108 q^{62} - 54 q^{63} - 594 q^{70} - 108 q^{71} - 54 q^{73} - 594 q^{74} - 162 q^{80} - 216 q^{91}+ \cdots - 162 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(489,[χ])S_{2}^{\mathrm{new}}(489, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
489.2.q.a 489.q 163.i 702702 3.9053.905 None 489.2.q.a 00 00 00 00 SU(2)[C81]\mathrm{SU}(2)[C_{81}]
489.2.q.b 489.q 163.i 756756 3.9053.905 None 489.2.q.b 00 00 00 00 SU(2)[C81]\mathrm{SU}(2)[C_{81}]

Decomposition of S2old(489,[χ])S_{2}^{\mathrm{old}}(489, [\chi]) into lower level spaces

S2old(489,[χ]) S_{2}^{\mathrm{old}}(489, [\chi]) \simeq S2new(163,[χ])S_{2}^{\mathrm{new}}(163, [\chi])2^{\oplus 2}