Properties

Label 4896.2.a
Level $4896$
Weight $2$
Character orbit 4896.a
Rep. character $\chi_{4896}(1,\cdot)$
Character field $\Q$
Dimension $80$
Newform subspaces $38$
Sturm bound $1728$
Trace bound $29$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4896 = 2^{5} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4896.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 38 \)
Sturm bound: \(1728\)
Trace bound: \(29\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4896))\).

Total New Old
Modular forms 896 80 816
Cusp forms 833 80 753
Eisenstein series 63 0 63

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(6\)
\(+\)\(+\)\(-\)\(-\)\(10\)
\(+\)\(-\)\(+\)\(-\)\(13\)
\(+\)\(-\)\(-\)\(+\)\(11\)
\(-\)\(+\)\(+\)\(-\)\(10\)
\(-\)\(+\)\(-\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(11\)
\(-\)\(-\)\(-\)\(-\)\(13\)
Plus space\(+\)\(34\)
Minus space\(-\)\(46\)

Trace form

\( 80 q + 16 q^{13} + 64 q^{25} - 16 q^{29} + 16 q^{37} + 16 q^{41} + 96 q^{49} + 48 q^{53} + 16 q^{61} - 16 q^{65} - 16 q^{77} + 80 q^{89} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4896))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 17
4896.2.a.a 4896.a 1.a $1$ $39.095$ \(\Q\) None 544.2.a.b \(0\) \(0\) \(-4\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}-4q^{7}-2q^{11}+2q^{13}+q^{17}+\cdots\)
4896.2.a.b 4896.a 1.a $1$ $39.095$ \(\Q\) None 544.2.a.b \(0\) \(0\) \(-4\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-4q^{5}+4q^{7}+2q^{11}+2q^{13}+q^{17}+\cdots\)
4896.2.a.c 4896.a 1.a $1$ $39.095$ \(\Q\) None 544.2.a.a \(0\) \(0\) \(-2\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-2q^{7}-2q^{11}+2q^{13}-q^{17}+\cdots\)
4896.2.a.d 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.f \(0\) \(0\) \(-2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}-4q^{11}-2q^{13}-q^{17}-8q^{23}+\cdots\)
4896.2.a.e 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.f \(0\) \(0\) \(-2\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}+4q^{11}-2q^{13}-q^{17}+8q^{23}+\cdots\)
4896.2.a.f 4896.a 1.a $1$ $39.095$ \(\Q\) None 544.2.a.a \(0\) \(0\) \(-2\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{5}+2q^{7}+2q^{11}+2q^{13}-q^{17}+\cdots\)
4896.2.a.g 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.e \(0\) \(0\) \(-1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{7}+5q^{11}-q^{13}+q^{17}+\cdots\)
4896.2.a.h 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.e \(0\) \(0\) \(-1\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}+2q^{7}-5q^{11}-q^{13}+q^{17}+\cdots\)
4896.2.a.i 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.d \(0\) \(0\) \(0\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}-6q^{13}+q^{17}+4q^{19}+6q^{23}+\cdots\)
4896.2.a.j 4896.a 1.a $1$ $39.095$ \(\Q\) None 544.2.a.c \(0\) \(0\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}+4q^{11}+2q^{13}+q^{17}-4q^{19}+\cdots\)
4896.2.a.k 4896.a 1.a $1$ $39.095$ \(\Q\) None 544.2.a.c \(0\) \(0\) \(0\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{7}-4q^{11}+2q^{13}+q^{17}+4q^{19}+\cdots\)
4896.2.a.l 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.d \(0\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{7}-6q^{13}+q^{17}-4q^{19}-6q^{23}+\cdots\)
4896.2.a.m 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.b \(0\) \(0\) \(1\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-2q^{7}-5q^{11}-5q^{13}-q^{17}+\cdots\)
4896.2.a.n 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.c \(0\) \(0\) \(1\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}-2q^{7}+q^{11}-q^{13}-q^{17}+\cdots\)
4896.2.a.o 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.c \(0\) \(0\) \(1\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+2q^{7}-q^{11}-q^{13}-q^{17}+\cdots\)
4896.2.a.p 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.b \(0\) \(0\) \(1\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+2q^{7}+5q^{11}-5q^{13}-q^{17}+\cdots\)
4896.2.a.q 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.a \(0\) \(0\) \(3\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}-2q^{7}-3q^{11}+3q^{13}+q^{17}+\cdots\)
4896.2.a.r 4896.a 1.a $1$ $39.095$ \(\Q\) None 1632.2.a.a \(0\) \(0\) \(3\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{5}+2q^{7}+3q^{11}+3q^{13}+q^{17}+\cdots\)
4896.2.a.s 4896.a 1.a $2$ $39.095$ \(\Q(\sqrt{5}) \) None 4896.2.a.s \(0\) \(0\) \(-2\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{5}-\beta q^{11}-q^{13}+q^{17}+\beta q^{19}+\cdots\)
4896.2.a.t 4896.a 1.a $2$ $39.095$ \(\Q(\sqrt{33}) \) None 1632.2.a.n \(0\) \(0\) \(-1\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{5}-2q^{7}-\beta q^{11}+(2+\beta )q^{13}+\cdots\)
4896.2.a.u 4896.a 1.a $2$ $39.095$ \(\Q(\sqrt{33}) \) None 1632.2.a.n \(0\) \(0\) \(-1\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{5}+2q^{7}+\beta q^{11}+(2+\beta )q^{13}+\cdots\)
4896.2.a.v 4896.a 1.a $2$ $39.095$ \(\Q(\sqrt{5}) \) None 4896.2.a.s \(0\) \(0\) \(2\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{5}+\beta q^{11}-q^{13}-q^{17}+\beta q^{19}+\cdots\)
4896.2.a.w 4896.a 1.a $2$ $39.095$ \(\Q(\sqrt{17}) \) None 1632.2.a.m \(0\) \(0\) \(3\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}+(-2+2\beta )q^{7}+(-1+\beta )q^{11}+\cdots\)
4896.2.a.x 4896.a 1.a $2$ $39.095$ \(\Q(\sqrt{17}) \) None 1632.2.a.m \(0\) \(0\) \(3\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{5}+(2-2\beta )q^{7}+(1-\beta )q^{11}+\cdots\)
4896.2.a.y 4896.a 1.a $2$ $39.095$ \(\Q(\sqrt{10}) \) None 544.2.a.h \(0\) \(0\) \(4\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+\beta q^{7}-\beta q^{11}-4q^{13}+q^{17}+\cdots\)
4896.2.a.z 4896.a 1.a $2$ $39.095$ \(\Q(\sqrt{2}) \) None 544.2.a.g \(0\) \(0\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}-3\beta q^{7}-\beta q^{11}-4q^{13}+q^{17}+\cdots\)
4896.2.a.ba 4896.a 1.a $3$ $39.095$ 3.3.316.1 None 1632.2.a.r \(0\) \(0\) \(-3\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{5}+(-1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
4896.2.a.bb 4896.a 1.a $3$ $39.095$ 3.3.316.1 None 1632.2.a.r \(0\) \(0\) \(-3\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{5}+(1+\beta _{1}+\beta _{2})q^{7}+\cdots\)
4896.2.a.bc 4896.a 1.a $3$ $39.095$ 3.3.229.1 None 1632.2.a.q \(0\) \(0\) \(-1\) \(-6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}-2q^{7}+(-1-\beta _{1}-\beta _{2})q^{11}+\cdots\)
4896.2.a.bd 4896.a 1.a $3$ $39.095$ 3.3.229.1 None 1632.2.a.q \(0\) \(0\) \(-1\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{5}+2q^{7}+(1+\beta _{1}+\beta _{2})q^{11}+\cdots\)
4896.2.a.be 4896.a 1.a $3$ $39.095$ 3.3.148.1 None 544.2.a.i \(0\) \(0\) \(2\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(\beta _{1}+\beta _{2})q^{5}+(-1+\beta _{2})q^{7}+(3+\beta _{1}+\cdots)q^{11}+\cdots\)
4896.2.a.bf 4896.a 1.a $3$ $39.095$ 3.3.148.1 None 544.2.a.i \(0\) \(0\) \(2\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+(\beta _{1}+\beta _{2})q^{5}+(1-\beta _{2})q^{7}+(-3-\beta _{1}+\cdots)q^{11}+\cdots\)
4896.2.a.bg 4896.a 1.a $4$ $39.095$ 4.4.13768.1 None 4896.2.a.bg \(0\) \(0\) \(-2\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{5}+(-1+\beta _{1})q^{7}+(1+\cdots)q^{11}+\cdots\)
4896.2.a.bh 4896.a 1.a $4$ $39.095$ 4.4.13768.1 None 4896.2.a.bg \(0\) \(0\) \(-2\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{5}+(1-\beta _{1})q^{7}+(-1+\cdots)q^{11}+\cdots\)
4896.2.a.bi 4896.a 1.a $4$ $39.095$ 4.4.13768.1 None 4896.2.a.bg \(0\) \(0\) \(2\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{5}+(-1+\beta _{1})q^{7}+(-1+\cdots)q^{11}+\cdots\)
4896.2.a.bj 4896.a 1.a $4$ $39.095$ 4.4.13768.1 None 4896.2.a.bg \(0\) \(0\) \(2\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{5}+(1-\beta _{1})q^{7}+(1+\beta _{2}+\cdots)q^{11}+\cdots\)
4896.2.a.bk 4896.a 1.a $6$ $39.095$ 6.6.102503232.1 None 4896.2.a.bk \(0\) \(0\) \(-6\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{3})q^{5}-\beta _{2}q^{7}-\beta _{5}q^{11}+\cdots\)
4896.2.a.bl 4896.a 1.a $6$ $39.095$ 6.6.102503232.1 None 4896.2.a.bk \(0\) \(0\) \(6\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{3})q^{5}+\beta _{2}q^{7}-\beta _{5}q^{11}+(1+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4896))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4896)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(153))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(306))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(544))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(612))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(816))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1224))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1632))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2448))\)\(^{\oplus 2}\)