Properties

Label 49.3
Level 49
Weight 3
Dimension 164
Nonzero newspaces 4
Newform subspaces 5
Sturm bound 588
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 49 = 7^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 5 \)
Sturm bound: \(588\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(49))\).

Total New Old
Modular forms 226 212 14
Cusp forms 166 164 2
Eisenstein series 60 48 12

Trace form

\( 164 q - 15 q^{2} - 21 q^{3} - 31 q^{4} - 21 q^{5} - 21 q^{6} - 14 q^{7} - 33 q^{8} - 39 q^{9} - 21 q^{10} - 9 q^{11} - 21 q^{12} - 21 q^{13} - 42 q^{14} - 39 q^{15} + q^{16} - 21 q^{17} + 33 q^{18} - 21 q^{19}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(49))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
49.3.b \(\chi_{49}(48, \cdot)\) 49.3.b.a 4 1
49.3.d \(\chi_{49}(19, \cdot)\) 49.3.d.a 2 2
49.3.d.b 8
49.3.f \(\chi_{49}(6, \cdot)\) 49.3.f.a 54 6
49.3.h \(\chi_{49}(3, \cdot)\) 49.3.h.a 96 12

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(49))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(49)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 1}\)