Defining parameters
Level: | \( N \) | = | \( 49 = 7^{2} \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(588\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(49))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 226 | 212 | 14 |
Cusp forms | 166 | 164 | 2 |
Eisenstein series | 60 | 48 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(49))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(49))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(49)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 1}\)