Properties

Label 49.4.g
Level $49$
Weight $4$
Character orbit 49.g
Rep. character $\chi_{49}(2,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $156$
Newform subspaces $1$
Sturm bound $18$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 49.g (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 1 \)
Sturm bound: \(18\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(49, [\chi])\).

Total New Old
Modular forms 180 180 0
Cusp forms 156 156 0
Eisenstein series 24 24 0

Trace form

\( 156 q - 13 q^{2} - 7 q^{3} + 35 q^{4} - 7 q^{5} - 70 q^{6} - 42 q^{7} + 16 q^{8} + 198 q^{9} + 85 q^{11} - 427 q^{12} + 14 q^{13} - 203 q^{14} + 230 q^{15} + 127 q^{16} + 189 q^{17} - 16 q^{18} - 490 q^{19}+ \cdots - 10804 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(49, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
49.4.g.a 49.g 49.g $156$ $2.891$ None 49.4.g.a \(-13\) \(-7\) \(-7\) \(-42\) $\mathrm{SU}(2)[C_{21}]$