Properties

Label 49.6.e
Level $49$
Weight $6$
Character orbit 49.e
Rep. character $\chi_{49}(8,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $138$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 49.e (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(49, [\chi])\).

Total New Old
Modular forms 150 150 0
Cusp forms 138 138 0
Eisenstein series 12 12 0

Trace form

\( 138 q - 5 q^{2} + 13 q^{3} - 389 q^{4} + 67 q^{5} + 331 q^{6} - 56 q^{7} + 305 q^{8} - 918 q^{9} - 771 q^{10} + 410 q^{11} - 1316 q^{12} + 483 q^{13} + 2597 q^{14} + 2557 q^{15} - 7357 q^{16} - 1422 q^{17}+ \cdots - 1090772 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(49, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
49.6.e.a 49.e 49.e $138$ $7.859$ None 49.6.e.a \(-5\) \(13\) \(67\) \(-56\) $\mathrm{SU}(2)[C_{7}]$