Defining parameters
Level: | \( N \) | \(=\) | \( 490 = 2 \cdot 5 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 490.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(168\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\), \(11\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(490, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 100 | 20 | 80 |
Cusp forms | 68 | 20 | 48 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(490, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(490, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(490, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)