Properties

Label 490.2.c
Level $490$
Weight $2$
Character orbit 490.c
Rep. character $\chi_{490}(99,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $7$
Sturm bound $168$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 490.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(168\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(3\), \(11\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(490, [\chi])\).

Total New Old
Modular forms 100 20 80
Cusp forms 68 20 48
Eisenstein series 32 0 32

Trace form

\( 20 q - 20 q^{4} - 4 q^{5} - 8 q^{9} - 4 q^{10} - 4 q^{11} - 8 q^{15} + 20 q^{16} + 16 q^{19} + 4 q^{20} + 8 q^{26} + 4 q^{29} - 12 q^{30} - 16 q^{31} - 8 q^{34} + 8 q^{36} - 24 q^{39} + 4 q^{40} + 24 q^{41}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(490, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
490.2.c.a 490.c 5.b $2$ $3.913$ \(\Q(\sqrt{-1}) \) None 70.2.i.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-q^{4}+(-i-2)q^{5}-i q^{8}+\cdots\)
490.2.c.b 490.c 5.b $2$ $3.913$ \(\Q(\sqrt{-1}) \) None 70.2.i.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-3 i q^{3}-q^{4}+(-2 i-1)q^{5}+\cdots\)
490.2.c.c 490.c 5.b $2$ $3.913$ \(\Q(\sqrt{-1}) \) None 70.2.i.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+3 i q^{3}-q^{4}+(2 i+1)q^{5}+\cdots\)
490.2.c.d 490.c 5.b $2$ $3.913$ \(\Q(\sqrt{-1}) \) None 70.2.i.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-q^{4}+(i+2)q^{5}-i q^{8}+\cdots\)
490.2.c.e 490.c 5.b $4$ $3.913$ \(\Q(i, \sqrt{6})\) None 70.2.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(\beta _{1}+\beta _{3})q^{3}-q^{4}+(-1+\cdots)q^{5}+\cdots\)
490.2.c.f 490.c 5.b $4$ $3.913$ \(\Q(\zeta_{8})\) None 490.2.c.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\zeta_{8}^{2}q^{2}+(\zeta_{8}+\zeta_{8}^{3})q^{3}-q^{4}+(\zeta_{8}+\cdots)q^{5}+\cdots\)
490.2.c.g 490.c 5.b $4$ $3.913$ \(\Q(\zeta_{8})\) None 490.2.c.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{8}^{2}q^{2}-q^{4}+(2\zeta_{8}+\zeta_{8}^{3})q^{5}+\zeta_{8}^{2}q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(490, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(490, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)