Properties

Label 490.6.e
Level $490$
Weight $6$
Character orbit 490.e
Rep. character $\chi_{490}(361,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $136$
Sturm bound $504$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 490.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(504\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(490, [\chi])\).

Total New Old
Modular forms 872 136 736
Cusp forms 808 136 672
Eisenstein series 64 0 64

Trace form

\( 136 q - 1088 q^{4} - 50 q^{5} + 80 q^{6} - 6462 q^{9} - 200 q^{10} + 770 q^{11} + 6720 q^{13} - 4400 q^{15} - 17408 q^{16} - 3396 q^{17} + 992 q^{18} + 1026 q^{19} + 1600 q^{20} + 4768 q^{22} - 132 q^{23}+ \cdots - 398740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(490, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(490, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(490, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 2}\)