Properties

Label 4925.2.a
Level $4925$
Weight $2$
Character orbit 4925.a
Rep. character $\chi_{4925}(1,\cdot)$
Character field $\Q$
Dimension $311$
Newform subspaces $19$
Sturm bound $990$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 19 \)
Sturm bound: \(990\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4925))\).

Total New Old
Modular forms 500 311 189
Cusp forms 489 311 178
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(197\)FrickeDim
\(+\)\(+\)\(+\)\(66\)
\(+\)\(-\)\(-\)\(81\)
\(-\)\(+\)\(-\)\(87\)
\(-\)\(-\)\(+\)\(77\)
Plus space\(+\)\(143\)
Minus space\(-\)\(168\)

Trace form

\( 311 q + q^{2} + 2 q^{3} + 313 q^{4} - 2 q^{6} + 6 q^{7} - 3 q^{8} + 309 q^{9} - 6 q^{11} + 4 q^{12} + 12 q^{13} - 10 q^{14} + 317 q^{16} + 16 q^{17} - 9 q^{18} + 22 q^{19} + 4 q^{22} - 12 q^{23} - 24 q^{24}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4925))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 197
4925.2.a.a 4925.a 1.a $1$ $39.326$ \(\Q\) None 4925.2.a.a \(-1\) \(-1\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}-q^{4}+q^{6}+2q^{7}+3q^{8}+\cdots\)
4925.2.a.b 4925.a 1.a $1$ $39.326$ \(\Q\) None 985.2.a.b \(-1\) \(0\) \(0\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-3q^{7}+3q^{8}-3q^{9}+4q^{11}+\cdots\)
4925.2.a.c 4925.a 1.a $1$ $39.326$ \(\Q\) None 4925.2.a.a \(1\) \(1\) \(0\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}-q^{4}+q^{6}-2q^{7}-3q^{8}+\cdots\)
4925.2.a.d 4925.a 1.a $1$ $39.326$ \(\Q\) None 197.2.a.a \(2\) \(0\) \(0\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}+3q^{7}-3q^{9}+4q^{11}+\cdots\)
4925.2.a.e 4925.a 1.a $1$ $39.326$ \(\Q\) None 985.2.a.a \(2\) \(2\) \(0\) \(-1\) $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{3}+2q^{4}+4q^{6}-q^{7}+\cdots\)
4925.2.a.f 4925.a 1.a $2$ $39.326$ \(\Q(\sqrt{17}) \) None 985.2.a.d \(1\) \(0\) \(0\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(2+\beta )q^{4}+(1+\beta )q^{7}+(4+\beta )q^{8}+\cdots\)
4925.2.a.g 4925.a 1.a $2$ $39.326$ \(\Q(\sqrt{2}) \) None 985.2.a.c \(2\) \(0\) \(0\) \(-6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-2\beta q^{3}-q^{4}-2\beta q^{6}+(-3+\cdots)q^{7}+\cdots\)
4925.2.a.h 4925.a 1.a $5$ $39.326$ 5.5.24217.1 None 197.2.a.b \(0\) \(8\) \(0\) \(10\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}+\beta _{2})q^{2}+(2-\beta _{1}-\beta _{2}+\beta _{3}+\cdots)q^{3}+\cdots\)
4925.2.a.i 4925.a 1.a $10$ $39.326$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 197.2.a.c \(0\) \(-10\) \(0\) \(-11\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1-\beta _{3})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
4925.2.a.j 4925.a 1.a $10$ $39.326$ 10.10.\(\cdots\).1 None 985.2.a.e \(2\) \(3\) \(0\) \(6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{5}q^{3}+(\beta _{1}+\beta _{3}+\beta _{4})q^{4}+\cdots\)
4925.2.a.k 4925.a 1.a $14$ $39.326$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 985.2.a.f \(6\) \(7\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{8})q^{3}+(\beta _{1}+\beta _{2})q^{4}+\cdots\)
4925.2.a.l 4925.a 1.a $17$ $39.326$ \(\mathbb{Q}[x]/(x^{17} - \cdots)\) None 985.2.a.g \(-6\) \(-5\) \(0\) \(-7\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{6}q^{3}+(1+\beta _{2})q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\)
4925.2.a.m 4925.a 1.a $18$ $39.326$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 985.2.a.h \(-7\) \(-3\) \(0\) \(8\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{8}q^{3}+(2+\beta _{2})q^{4}+(\beta _{7}+\cdots)q^{6}+\cdots\)
4925.2.a.n 4925.a 1.a $28$ $39.326$ None 4925.2.a.n \(-1\) \(0\) \(0\) \(2\) $-$ $-$ $\mathrm{SU}(2)$
4925.2.a.o 4925.a 1.a $28$ $39.326$ None 4925.2.a.n \(1\) \(0\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$
4925.2.a.p 4925.a 1.a $37$ $39.326$ None 4925.2.a.p \(-2\) \(-1\) \(0\) \(4\) $-$ $+$ $\mathrm{SU}(2)$
4925.2.a.q 4925.a 1.a $37$ $39.326$ None 4925.2.a.p \(2\) \(1\) \(0\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$
4925.2.a.r 4925.a 1.a $49$ $39.326$ None 985.2.b.a \(-5\) \(-22\) \(0\) \(-32\) $-$ $-$ $\mathrm{SU}(2)$
4925.2.a.s 4925.a 1.a $49$ $39.326$ None 985.2.b.a \(5\) \(22\) \(0\) \(32\) $-$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4925))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4925)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(197))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(985))\)\(^{\oplus 2}\)