Defining parameters
Level: | \( N \) | \(=\) | \( 4925 = 5^{2} \cdot 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4925.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 19 \) | ||
Sturm bound: | \(990\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4925))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 500 | 311 | 189 |
Cusp forms | 489 | 311 | 178 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(197\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(66\) |
\(+\) | \(-\) | \(-\) | \(81\) |
\(-\) | \(+\) | \(-\) | \(87\) |
\(-\) | \(-\) | \(+\) | \(77\) |
Plus space | \(+\) | \(143\) | |
Minus space | \(-\) | \(168\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4925))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4925))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4925)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(197))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(985))\)\(^{\oplus 2}\)