Defining parameters
Level: | \( N \) | \(=\) | \( 4928 = 2^{6} \cdot 7 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4928.dn (of order \(24\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 224 \) |
Character field: | \(\Q(\zeta_{24})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(1536\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4928, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6208 | 0 | 6208 |
Cusp forms | 6080 | 0 | 6080 |
Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{old}}(4928, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4928, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2464, [\chi])\)\(^{\oplus 2}\)