Defining parameters
Level: | \( N \) | \(=\) | \( 495 = 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 495.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(495, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 64 | 96 |
Cusp forms | 128 | 56 | 72 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(495, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
495.2.k.a | $4$ | $3.953$ | \(\Q(i, \sqrt{11})\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-2\beta _{2}q^{4}+(-\beta _{1}-\beta _{2})q^{5}+(-2\beta _{1}+\cdots)q^{11}+\cdots\) |
495.2.k.b | $4$ | $3.953$ | \(\Q(i, \sqrt{10})\) | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q+\beta _{1}q^{2}+3\beta _{2}q^{4}+(2+\beta _{2})q^{5}+\beta _{3}q^{8}+\cdots\) |
495.2.k.c | $24$ | $3.953$ | None | \(0\) | \(0\) | \(-8\) | \(0\) | ||
495.2.k.d | $24$ | $3.953$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(495, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(495, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)