Properties

Label 495.2.k
Level 495495
Weight 22
Character orbit 495.k
Rep. character χ495(208,)\chi_{495}(208,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 5656
Newform subspaces 44
Sturm bound 144144
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 495=32511 495 = 3^{2} \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 495.k (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 55 55
Character field: Q(i)\Q(i)
Newform subspaces: 4 4
Sturm bound: 144144
Trace bound: 55
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(495,[χ])M_{2}(495, [\chi]).

Total New Old
Modular forms 160 64 96
Cusp forms 128 56 72
Eisenstein series 32 8 24

Trace form

56q+4q1160q16+16q20+4q22+18q2318q25+40q2624q31+30q37+16q38+12q478q5310q55160q56+24q5890q67+80q70++18q97+O(q100) 56 q + 4 q^{11} - 60 q^{16} + 16 q^{20} + 4 q^{22} + 18 q^{23} - 18 q^{25} + 40 q^{26} - 24 q^{31} + 30 q^{37} + 16 q^{38} + 12 q^{47} - 8 q^{53} - 10 q^{55} - 160 q^{56} + 24 q^{58} - 90 q^{67} + 80 q^{70}+ \cdots + 18 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(495,[χ])S_{2}^{\mathrm{new}}(495, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
495.2.k.a 495.k 55.e 44 3.9533.953 Q(i,11)\Q(i, \sqrt{11}) Q(11)\Q(\sqrt{-11}) 55.2.e.b 00 00 00 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q2β2q4+(β1β2)q5+(2β1+)q11+q-2\beta _{2}q^{4}+(-\beta _{1}-\beta _{2})q^{5}+(-2\beta _{1}+\cdots)q^{11}+\cdots
495.2.k.b 495.k 55.e 44 3.9533.953 Q(i,10)\Q(i, \sqrt{10}) None 55.2.e.a 00 00 88 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β1q2+3β2q4+(2+β2)q5+β3q8+q+\beta _{1}q^{2}+3\beta _{2}q^{4}+(2+\beta _{2})q^{5}+\beta _{3}q^{8}+\cdots
495.2.k.c 495.k 55.e 2424 3.9533.953 None 165.2.j.a 00 00 8-8 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]
495.2.k.d 495.k 55.e 2424 3.9533.953 None 495.2.k.d 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Decomposition of S2old(495,[χ])S_{2}^{\mathrm{old}}(495, [\chi]) into lower level spaces

S2old(495,[χ]) S_{2}^{\mathrm{old}}(495, [\chi]) \simeq S2new(55,[χ])S_{2}^{\mathrm{new}}(55, [\chi])3^{\oplus 3}\oplusS2new(165,[χ])S_{2}^{\mathrm{new}}(165, [\chi])2^{\oplus 2}