Defining parameters
Level: | \( N \) | \(=\) | \( 495 = 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 495.u (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 45 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(495, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 120 | 32 |
Cusp forms | 136 | 120 | 16 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(495, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
495.2.u.a | $52$ | $3.953$ | None | \(0\) | \(0\) | \(1\) | \(0\) | ||
495.2.u.b | $68$ | $3.953$ | None | \(0\) | \(0\) | \(-2\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(495, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(495, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)