Defining parameters
Level: | \( N \) | \(=\) | \( 495 = 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 495.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(495, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 304 | 100 | 204 |
Cusp forms | 272 | 100 | 172 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(495, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
495.3.j.a | $20$ | $13.488$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(4\) | \(0\) | \(8\) | \(0\) | \(q+\beta _{5}q^{2}+(-2\beta _{8}-\beta _{16})q^{4}+\beta _{15}q^{5}+\cdots\) |
495.3.j.b | $40$ | $13.488$ | None | \(-8\) | \(0\) | \(-16\) | \(0\) | ||
495.3.j.c | $40$ | $13.488$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(495, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(495, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)