Properties

Label 495.3.j
Level $495$
Weight $3$
Character orbit 495.j
Rep. character $\chi_{495}(298,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $100$
Newform subspaces $3$
Sturm bound $216$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 495.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(216\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(495, [\chi])\).

Total New Old
Modular forms 304 100 204
Cusp forms 272 100 172
Eisenstein series 32 0 32

Trace form

\( 100 q - 4 q^{2} - 8 q^{5} + 12 q^{8} + 12 q^{10} - 28 q^{13} - 512 q^{16} - 48 q^{17} - 104 q^{20} + 70 q^{23} + 90 q^{25} + 96 q^{26} + 140 q^{28} - 8 q^{31} - 56 q^{32} - 132 q^{35} - 78 q^{37} - 320 q^{38}+ \cdots - 172 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(495, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
495.3.j.a 495.j 5.c $20$ $13.488$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 55.3.f.a \(4\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{5}q^{2}+(-2\beta _{8}-\beta _{16})q^{4}+\beta _{15}q^{5}+\cdots\)
495.3.j.b 495.j 5.c $40$ $13.488$ None 165.3.i.a \(-8\) \(0\) \(-16\) \(0\) $\mathrm{SU}(2)[C_{4}]$
495.3.j.c 495.j 5.c $40$ $13.488$ None 495.3.j.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{3}^{\mathrm{old}}(495, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(495, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 2}\)