Defining parameters
Level: | \( N \) | \(=\) | \( 496 = 2^{4} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 496.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(496, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 2 | 10 |
Cusp forms | 6 | 1 | 5 |
Eisenstein series | 6 | 1 | 5 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 1 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(496, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
496.1.e.a | $1$ | $0.248$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-31}) \) | None | \(0\) | \(0\) | \(-1\) | \(1\) | \(q-q^{5}+q^{7}+q^{9}+q^{19}-q^{31}-q^{35}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(496, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(496, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 5}\)