Properties

Label 496.1.e
Level $496$
Weight $1$
Character orbit 496.e
Rep. character $\chi_{496}(433,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 496 = 2^{4} \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 496.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(496, [\chi])\).

Total New Old
Modular forms 12 2 10
Cusp forms 6 1 5
Eisenstein series 6 1 5

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 1 0 0 0

Trace form

\( q - q^{5} + q^{7} + q^{9} + q^{19} - q^{31} - q^{35} - q^{41} - q^{45} - 2 q^{47} + q^{59} + q^{63} - 2 q^{67} + q^{71} + q^{81} - q^{95} - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(496, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
496.1.e.a 496.e 31.b $1$ $0.248$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-31}) \) None 31.1.b.a \(0\) \(0\) \(-1\) \(1\) \(q-q^{5}+q^{7}+q^{9}+q^{19}-q^{31}-q^{35}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(496, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(496, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 5}\)