Properties

Label 498.2.f
Level 498498
Weight 22
Character orbit 498.f
Rep. character χ498(5,)\chi_{498}(5,\cdot)
Character field Q(ζ82)\Q(\zeta_{82})
Dimension 11201120
Newform subspaces 22
Sturm bound 168168
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 498=2383 498 = 2 \cdot 3 \cdot 83
Weight: k k == 2 2
Character orbit: [χ][\chi] == 498.f (of order 8282 and degree 4040)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 249 249
Character field: Q(ζ82)\Q(\zeta_{82})
Newform subspaces: 2 2
Sturm bound: 168168
Trace bound: 22
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(498,[χ])M_{2}(498, [\chi]).

Total New Old
Modular forms 3520 1120 2400
Cusp forms 3200 1120 2080
Eisenstein series 320 0 320

Trace form

1120q+2q328q4+4q714q9+4q10+2q1228q16+22q2132q25+20q27+4q28+4q304q31+18q3314q36+4q40+2q4824q49+216q99+O(q100) 1120 q + 2 q^{3} - 28 q^{4} + 4 q^{7} - 14 q^{9} + 4 q^{10} + 2 q^{12} - 28 q^{16} + 22 q^{21} - 32 q^{25} + 20 q^{27} + 4 q^{28} + 4 q^{30} - 4 q^{31} + 18 q^{33} - 14 q^{36} + 4 q^{40} + 2 q^{48} - 24 q^{49}+ \cdots - 216 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(498,[χ])S_{2}^{\mathrm{new}}(498, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
498.2.f.a 498.f 249.f 560560 3.9773.977 None 498.2.f.a 14-14 11 22 22 SU(2)[C82]\mathrm{SU}(2)[C_{82}]
498.2.f.b 498.f 249.f 560560 3.9773.977 None 498.2.f.a 1414 11 2-2 22 SU(2)[C82]\mathrm{SU}(2)[C_{82}]

Decomposition of S2old(498,[χ])S_{2}^{\mathrm{old}}(498, [\chi]) into lower level spaces

S2old(498,[χ]) S_{2}^{\mathrm{old}}(498, [\chi]) \simeq S2new(249,[χ])S_{2}^{\mathrm{new}}(249, [\chi])2^{\oplus 2}