Defining parameters
Level: | \( N \) | \(=\) | \( 5 \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 5.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(11\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(5))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 11 | 7 | 4 |
Cusp forms | 9 | 7 | 2 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | Dim |
---|---|
\(+\) | \(3\) |
\(-\) | \(4\) |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(5))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 5 | |||||||
5.22.a.a | $3$ | $13.974$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(-1312\) | \(52194\) | \(-29296875\) | \(684416558\) | $+$ | \(q+(-437+\beta _{1})q^{2}+(17400+8\beta _{1}+\cdots)q^{3}+\cdots\) | |
5.22.a.b | $4$ | $13.974$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(2910\) | \(83240\) | \(39062500\) | \(512613800\) | $-$ | \(q+(728-\beta _{1})q^{2}+(20803+14\beta _{1}+\beta _{3})q^{3}+\cdots\) |
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(5))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_0(5)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)