Properties

Label 5.22.a
Level $5$
Weight $22$
Character orbit 5.a
Rep. character $\chi_{5}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $2$
Sturm bound $11$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 5.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(11\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(5))\).

Total New Old
Modular forms 11 7 4
Cusp forms 9 7 2
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)Dim
\(+\)\(3\)
\(-\)\(4\)

Trace form

\( 7 q + 1598 q^{2} + 135434 q^{3} + 10156404 q^{4} + 9765625 q^{5} - 134284136 q^{6} + 1197030358 q^{7} + 6286638600 q^{8} + 23738514151 q^{9} + 41230468750 q^{10} + 36915589184 q^{11} - 503308196432 q^{12}+ \cdots - 28\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(5))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5
5.22.a.a 5.a 1.a $3$ $13.974$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 5.22.a.a \(-1312\) \(52194\) \(-29296875\) \(684416558\) $+$ $\mathrm{SU}(2)$ \(q+(-437+\beta _{1})q^{2}+(17400+8\beta _{1}+\cdots)q^{3}+\cdots\)
5.22.a.b 5.a 1.a $4$ $13.974$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 5.22.a.b \(2910\) \(83240\) \(39062500\) \(512613800\) $-$ $\mathrm{SU}(2)$ \(q+(728-\beta _{1})q^{2}+(20803+14\beta _{1}+\beta _{3})q^{3}+\cdots\)

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(5))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_0(5)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)