Properties

Label 5.34
Level 5
Weight 34
Dimension 27
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 68
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 5 \)
Weight: \( k \) = \( 34 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(68\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{34}(\Gamma_1(5))\).

Total New Old
Modular forms 35 29 6
Cusp forms 31 27 4
Eisenstein series 4 2 2

Trace form

\( 27 q + 177822 q^{2} + 11525186 q^{3} - 42189369860 q^{4} - 79580269655 q^{5} + 30542599711984 q^{6} - 46338728939658 q^{7} + 32\!\cdots\!00 q^{8} + 608196999164035 q^{9} - 44\!\cdots\!30 q^{10} + 82\!\cdots\!64 q^{11}+ \cdots + 33\!\cdots\!20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{34}^{\mathrm{new}}(\Gamma_1(5))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
5.34.a \(\chi_{5}(1, \cdot)\) 5.34.a.a 5 1
5.34.a.b 6
5.34.b \(\chi_{5}(4, \cdot)\) 5.34.b.a 16 1

Decomposition of \(S_{34}^{\mathrm{old}}(\Gamma_1(5))\) into lower level spaces

\( S_{34}^{\mathrm{old}}(\Gamma_1(5)) \cong \) \(S_{34}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 2}\)