Properties

Label 50.2.b
Level $50$
Weight $2$
Character orbit 50.b
Rep. character $\chi_{50}(49,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $15$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(15\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(50, [\chi])\).

Total New Old
Modular forms 14 2 12
Cusp forms 2 2 0
Eisenstein series 12 0 12

Trace form

\( 2 q - 2 q^{4} - 2 q^{6} + 4 q^{9} - 6 q^{11} + 4 q^{14} + 2 q^{16} - 10 q^{19} + 4 q^{21} + 2 q^{24} + 8 q^{26} + 4 q^{31} - 6 q^{34} - 4 q^{36} + 8 q^{39} - 6 q^{41} + 6 q^{44} - 12 q^{46} + 6 q^{49} - 6 q^{51}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(50, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
50.2.b.a 50.b 5.b $2$ $0.399$ \(\Q(\sqrt{-1}) \) None 50.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}-q^{4}-q^{6}-2 i q^{7}+\cdots\)