Properties

Label 50.4.a
Level 5050
Weight 44
Character orbit 50.a
Rep. character χ50(1,)\chi_{50}(1,\cdot)
Character field Q\Q
Dimension 55
Newform subspaces 55
Sturm bound 3030
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 50=252 50 = 2 \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 50.a (trivial)
Character field: Q\Q
Newform subspaces: 5 5
Sturm bound: 3030
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(50))M_{4}(\Gamma_0(50)).

Total New Old
Modular forms 29 5 24
Cusp forms 17 5 12
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

2255FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++882266552233330033
++--661155331122330033
-++-770077440044330033
--++882266552233330033
Plus space++161644121210104466660066
Minus space-1313111212771166660066

Trace form

5q2q2+8q3+20q4+20q6+4q78q8+35q9+10q11+32q12+58q1340q14+80q1666q1774q18150q19340q2124q22132q23++2920q99+O(q100) 5 q - 2 q^{2} + 8 q^{3} + 20 q^{4} + 20 q^{6} + 4 q^{7} - 8 q^{8} + 35 q^{9} + 10 q^{11} + 32 q^{12} + 58 q^{13} - 40 q^{14} + 80 q^{16} - 66 q^{17} - 74 q^{18} - 150 q^{19} - 340 q^{21} - 24 q^{22} - 132 q^{23}+ \cdots + 2920 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(50))S_{4}^{\mathrm{new}}(\Gamma_0(50)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 5
50.4.a.a 50.a 1.a 11 2.9502.950 Q\Q None 50.4.a.a 2-2 7-7 00 3434 ++ ++ SU(2)\mathrm{SU}(2) q2q27q3+4q4+14q6+34q7+q-2q^{2}-7q^{3}+4q^{4}+14q^{6}+34q^{7}+\cdots
50.4.a.b 50.a 1.a 11 2.9502.950 Q\Q None 10.4.b.a 2-2 2-2 00 26-26 ++ - SU(2)\mathrm{SU}(2) q2q22q3+4q4+4q626q7+q-2q^{2}-2q^{3}+4q^{4}+4q^{6}-26q^{7}+\cdots
50.4.a.c 50.a 1.a 11 2.9502.950 Q\Q None 10.4.a.a 2-2 88 00 44 ++ ++ SU(2)\mathrm{SU}(2) q2q2+8q3+4q424q6+4q7+q-2q^{2}+8q^{3}+4q^{4}-2^{4}q^{6}+4q^{7}+\cdots
50.4.a.d 50.a 1.a 11 2.9502.950 Q\Q None 10.4.b.a 22 22 00 2626 - - SU(2)\mathrm{SU}(2) q+2q2+2q3+4q4+4q6+26q7+q+2q^{2}+2q^{3}+4q^{4}+4q^{6}+26q^{7}+\cdots
50.4.a.e 50.a 1.a 11 2.9502.950 Q\Q None 50.4.a.a 22 77 00 34-34 - - SU(2)\mathrm{SU}(2) q+2q2+7q3+4q4+14q634q7+q+2q^{2}+7q^{3}+4q^{4}+14q^{6}-34q^{7}+\cdots

Decomposition of S4old(Γ0(50))S_{4}^{\mathrm{old}}(\Gamma_0(50)) into lower level spaces

S4old(Γ0(50)) S_{4}^{\mathrm{old}}(\Gamma_0(50)) \simeq S4new(Γ0(5))S_{4}^{\mathrm{new}}(\Gamma_0(5))4^{\oplus 4}\oplusS4new(Γ0(10))S_{4}^{\mathrm{new}}(\Gamma_0(10))2^{\oplus 2}\oplusS4new(Γ0(25))S_{4}^{\mathrm{new}}(\Gamma_0(25))2^{\oplus 2}