Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M4(Γ0(50)).
|
Total |
New |
Old |
Modular forms
| 29 |
5 |
24 |
Cusp forms
| 17 |
5 |
12 |
Eisenstein series
| 12 |
0 |
12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 5 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 8 | 2 | 6 | | 5 | 2 | 3 | | 3 | 0 | 3 |
+ | − | − | | 6 | 1 | 5 | | 3 | 1 | 2 | | 3 | 0 | 3 |
− | + | − | | 7 | 0 | 7 | | 4 | 0 | 4 | | 3 | 0 | 3 |
− | − | + | | 8 | 2 | 6 | | 5 | 2 | 3 | | 3 | 0 | 3 |
Plus space | + | | 16 | 4 | 12 | | 10 | 4 | 6 | | 6 | 0 | 6 |
Minus space | − | | 13 | 1 | 12 | | 7 | 1 | 6 | | 6 | 0 | 6 |
Decomposition of S4new(Γ0(50)) into newform subspaces
Decomposition of S4old(Γ0(50)) into lower level spaces