Defining parameters
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(30\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(50))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 29 | 5 | 24 |
Cusp forms | 17 | 5 | 12 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(4\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(50))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
50.4.a.a | $1$ | $2.950$ | \(\Q\) | None | \(-2\) | \(-7\) | \(0\) | \(34\) | $+$ | $+$ | \(q-2q^{2}-7q^{3}+4q^{4}+14q^{6}+34q^{7}+\cdots\) | |
50.4.a.b | $1$ | $2.950$ | \(\Q\) | None | \(-2\) | \(-2\) | \(0\) | \(-26\) | $+$ | $-$ | \(q-2q^{2}-2q^{3}+4q^{4}+4q^{6}-26q^{7}+\cdots\) | |
50.4.a.c | $1$ | $2.950$ | \(\Q\) | None | \(-2\) | \(8\) | \(0\) | \(4\) | $+$ | $+$ | \(q-2q^{2}+8q^{3}+4q^{4}-2^{4}q^{6}+4q^{7}+\cdots\) | |
50.4.a.d | $1$ | $2.950$ | \(\Q\) | None | \(2\) | \(2\) | \(0\) | \(26\) | $-$ | $-$ | \(q+2q^{2}+2q^{3}+4q^{4}+4q^{6}+26q^{7}+\cdots\) | |
50.4.a.e | $1$ | $2.950$ | \(\Q\) | None | \(2\) | \(7\) | \(0\) | \(-34\) | $-$ | $-$ | \(q+2q^{2}+7q^{3}+4q^{4}+14q^{6}-34q^{7}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(50))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(50)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)