Defining parameters
Level: | \( N \) | \(=\) | \( 50 = 2 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 50.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(45\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(50))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 43 | 7 | 36 |
Cusp forms | 31 | 7 | 24 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(5\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(50))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
50.6.a.a | $1$ | $8.019$ | \(\Q\) | None | \(-4\) | \(-11\) | \(0\) | \(-142\) | $+$ | $-$ | \(q-4q^{2}-11q^{3}+2^{4}q^{4}+44q^{6}-142q^{7}+\cdots\) | |
50.6.a.b | $1$ | $8.019$ | \(\Q\) | None | \(-4\) | \(-6\) | \(0\) | \(118\) | $+$ | $+$ | \(q-4q^{2}-6q^{3}+2^{4}q^{4}+24q^{6}+118q^{7}+\cdots\) | |
50.6.a.c | $1$ | $8.019$ | \(\Q\) | None | \(-4\) | \(14\) | \(0\) | \(158\) | $+$ | $-$ | \(q-4q^{2}+14q^{3}+2^{4}q^{4}-56q^{6}+158q^{7}+\cdots\) | |
50.6.a.d | $1$ | $8.019$ | \(\Q\) | None | \(4\) | \(-24\) | \(0\) | \(172\) | $-$ | $+$ | \(q+4q^{2}-24q^{3}+2^{4}q^{4}-96q^{6}+172q^{7}+\cdots\) | |
50.6.a.e | $1$ | $8.019$ | \(\Q\) | None | \(4\) | \(-14\) | \(0\) | \(-158\) | $-$ | $-$ | \(q+4q^{2}-14q^{3}+2^{4}q^{4}-56q^{6}-158q^{7}+\cdots\) | |
50.6.a.f | $1$ | $8.019$ | \(\Q\) | None | \(4\) | \(11\) | \(0\) | \(142\) | $-$ | $+$ | \(q+4q^{2}+11q^{3}+2^{4}q^{4}+44q^{6}+142q^{7}+\cdots\) | |
50.6.a.g | $1$ | $8.019$ | \(\Q\) | None | \(4\) | \(26\) | \(0\) | \(22\) | $-$ | $+$ | \(q+4q^{2}+26q^{3}+2^{4}q^{4}+104q^{6}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(50))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(50)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)