Properties

Label 50.6.a
Level $50$
Weight $6$
Character orbit 50.a
Rep. character $\chi_{50}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $7$
Sturm bound $45$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(45\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(50))\).

Total New Old
Modular forms 43 7 36
Cusp forms 31 7 24
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(2\)
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(1\)
Plus space\(+\)\(2\)
Minus space\(-\)\(5\)

Trace form

\( 7 q + 4 q^{2} - 4 q^{3} + 112 q^{4} + 8 q^{6} + 312 q^{7} + 64 q^{8} + 221 q^{9} + 814 q^{11} - 64 q^{12} - 114 q^{13} + 176 q^{14} + 1792 q^{16} - 918 q^{17} + 3892 q^{18} + 5590 q^{19} + 3284 q^{21} - 3312 q^{22}+ \cdots - 504008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(50))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
50.6.a.a 50.a 1.a $1$ $8.019$ \(\Q\) None 50.6.a.a \(-4\) \(-11\) \(0\) \(-142\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}-11q^{3}+2^{4}q^{4}+44q^{6}-142q^{7}+\cdots\)
50.6.a.b 50.a 1.a $1$ $8.019$ \(\Q\) None 10.6.a.c \(-4\) \(-6\) \(0\) \(118\) $+$ $+$ $\mathrm{SU}(2)$ \(q-4q^{2}-6q^{3}+2^{4}q^{4}+24q^{6}+118q^{7}+\cdots\)
50.6.a.c 50.a 1.a $1$ $8.019$ \(\Q\) None 10.6.b.a \(-4\) \(14\) \(0\) \(158\) $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{2}+14q^{3}+2^{4}q^{4}-56q^{6}+158q^{7}+\cdots\)
50.6.a.d 50.a 1.a $1$ $8.019$ \(\Q\) None 10.6.a.b \(4\) \(-24\) \(0\) \(172\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}-24q^{3}+2^{4}q^{4}-96q^{6}+172q^{7}+\cdots\)
50.6.a.e 50.a 1.a $1$ $8.019$ \(\Q\) None 10.6.b.a \(4\) \(-14\) \(0\) \(-158\) $-$ $-$ $\mathrm{SU}(2)$ \(q+4q^{2}-14q^{3}+2^{4}q^{4}-56q^{6}-158q^{7}+\cdots\)
50.6.a.f 50.a 1.a $1$ $8.019$ \(\Q\) None 50.6.a.a \(4\) \(11\) \(0\) \(142\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+11q^{3}+2^{4}q^{4}+44q^{6}+142q^{7}+\cdots\)
50.6.a.g 50.a 1.a $1$ $8.019$ \(\Q\) None 10.6.a.a \(4\) \(26\) \(0\) \(22\) $-$ $+$ $\mathrm{SU}(2)$ \(q+4q^{2}+26q^{3}+2^{4}q^{4}+104q^{6}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(50))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(50)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)