Properties

Label 50.6.b
Level $50$
Weight $6$
Character orbit 50.b
Rep. character $\chi_{50}(49,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $4$
Sturm bound $45$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 50.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(45\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(50, [\chi])\).

Total New Old
Modular forms 44 8 36
Cusp forms 32 8 24
Eisenstein series 12 0 12

Trace form

\( 8 q - 128 q^{4} + 152 q^{6} - 874 q^{9} + 666 q^{11} - 1744 q^{14} + 2048 q^{16} - 10 q^{19} - 5404 q^{21} - 2432 q^{24} + 9712 q^{26} + 4860 q^{29} - 13484 q^{31} - 5064 q^{34} + 13984 q^{36} + 49192 q^{39}+ \cdots + 846252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(50, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
50.6.b.a 50.b 5.b $2$ $8.019$ \(\Q(\sqrt{-1}) \) None 10.6.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{2}+12\beta q^{3}-16 q^{4}-96 q^{6}+\cdots\)
50.6.b.b 50.b 5.b $2$ $8.019$ \(\Q(\sqrt{-1}) \) None 10.6.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{2}-3\beta q^{3}-16 q^{4}+24 q^{6}+\cdots\)
50.6.b.c 50.b 5.b $2$ $8.019$ \(\Q(\sqrt{-1}) \) None 50.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 i q^{2}-11 i q^{3}-16 q^{4}+44 q^{6}+\cdots\)
50.6.b.d 50.b 5.b $2$ $8.019$ \(\Q(\sqrt{-1}) \) None 10.6.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{2}-13\beta q^{3}-16 q^{4}+104 q^{6}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(50, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(50, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)