Properties

Label 50.6.b
Level 5050
Weight 66
Character orbit 50.b
Rep. character χ50(49,)\chi_{50}(49,\cdot)
Character field Q\Q
Dimension 88
Newform subspaces 44
Sturm bound 4545
Trace bound 66

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 50=252 50 = 2 \cdot 5^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 50.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 4545
Trace bound: 66
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M6(50,[χ])M_{6}(50, [\chi]).

Total New Old
Modular forms 44 8 36
Cusp forms 32 8 24
Eisenstein series 12 0 12

Trace form

8q128q4+152q6874q9+666q111744q14+2048q1610q195404q212432q24+9712q26+4860q2913484q315064q34+13984q36+49192q39++846252q99+O(q100) 8 q - 128 q^{4} + 152 q^{6} - 874 q^{9} + 666 q^{11} - 1744 q^{14} + 2048 q^{16} - 10 q^{19} - 5404 q^{21} - 2432 q^{24} + 9712 q^{26} + 4860 q^{29} - 13484 q^{31} - 5064 q^{34} + 13984 q^{36} + 49192 q^{39}+ \cdots + 846252 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(50,[χ])S_{6}^{\mathrm{new}}(50, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
50.6.b.a 50.b 5.b 22 8.0198.019 Q(1)\Q(\sqrt{-1}) None 10.6.a.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+2βq2+12βq316q496q6+q+2\beta q^{2}+12\beta q^{3}-16 q^{4}-96 q^{6}+\cdots
50.6.b.b 50.b 5.b 22 8.0198.019 Q(1)\Q(\sqrt{-1}) None 10.6.a.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+2βq23βq316q4+24q6+q+2\beta q^{2}-3\beta q^{3}-16 q^{4}+24 q^{6}+\cdots
50.6.b.c 50.b 5.b 22 8.0198.019 Q(1)\Q(\sqrt{-1}) None 50.6.a.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+4iq211iq316q4+44q6+q+4 i q^{2}-11 i q^{3}-16 q^{4}+44 q^{6}+\cdots
50.6.b.d 50.b 5.b 22 8.0198.019 Q(1)\Q(\sqrt{-1}) None 10.6.a.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+2βq213βq316q4+104q6+q+2\beta q^{2}-13\beta q^{3}-16 q^{4}+104 q^{6}+\cdots

Decomposition of S6old(50,[χ])S_{6}^{\mathrm{old}}(50, [\chi]) into lower level spaces

S6old(50,[χ]) S_{6}^{\mathrm{old}}(50, [\chi]) \simeq S6new(5,[χ])S_{6}^{\mathrm{new}}(5, [\chi])4^{\oplus 4}\oplusS6new(10,[χ])S_{6}^{\mathrm{new}}(10, [\chi])2^{\oplus 2}\oplusS6new(25,[χ])S_{6}^{\mathrm{new}}(25, [\chi])2^{\oplus 2}