Properties

Label 50.7
Level 50
Weight 7
Dimension 138
Nonzero newspaces 2
Newform subspaces 8
Sturm bound 1050
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 8 \)
Sturm bound: \(1050\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(50))\).

Total New Old
Modular forms 478 138 340
Cusp forms 422 138 284
Eisenstein series 56 0 56

Trace form

\( 138 q - 16 q^{2} + 128 q^{3} - 180 q^{5} - 448 q^{6} + 1392 q^{7} + 512 q^{8} - 2280 q^{10} - 944 q^{11} + 4096 q^{12} + 9228 q^{13} - 3320 q^{15} + 12288 q^{16} - 26148 q^{17} + 24296 q^{18} + 38400 q^{19}+ \cdots + 2572144 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(50))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
50.7.c \(\chi_{50}(7, \cdot)\) 50.7.c.a 2 2
50.7.c.b 2
50.7.c.c 2
50.7.c.d 4
50.7.c.e 4
50.7.c.f 4
50.7.f \(\chi_{50}(3, \cdot)\) 50.7.f.a 56 8
50.7.f.b 64

Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(50))\) into lower level spaces

\( S_{7}^{\mathrm{old}}(\Gamma_1(50)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)