Properties

Label 50.8.a
Level $50$
Weight $8$
Character orbit 50.a
Rep. character $\chi_{50}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $10$
Sturm bound $60$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 50.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(60\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(50))\).

Total New Old
Modular forms 59 12 47
Cusp forms 47 12 35
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(4\)
Plus space\(+\)\(7\)
Minus space\(-\)\(5\)

Trace form

\( 12 q - 40 q^{3} + 768 q^{4} - 592 q^{6} - 1120 q^{7} + 15554 q^{9} - 3366 q^{11} - 2560 q^{12} + 7220 q^{13} + 11744 q^{14} + 49152 q^{16} - 34980 q^{17} - 5120 q^{18} - 52310 q^{19} + 138764 q^{21} + 49920 q^{22}+ \cdots - 3678572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(50))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
50.8.a.a 50.a 1.a $1$ $15.619$ \(\Q\) None 50.8.a.a \(-8\) \(-43\) \(0\) \(-974\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}-43q^{3}+2^{6}q^{4}+344q^{6}+\cdots\)
50.8.a.b 50.a 1.a $1$ $15.619$ \(\Q\) None 10.8.a.a \(-8\) \(-28\) \(0\) \(-104\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}-28q^{3}+2^{6}q^{4}+224q^{6}+\cdots\)
50.8.a.c 50.a 1.a $1$ $15.619$ \(\Q\) None 50.8.a.c \(-8\) \(57\) \(0\) \(-1174\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+57q^{3}+2^{6}q^{4}-456q^{6}+\cdots\)
50.8.a.d 50.a 1.a $1$ $15.619$ \(\Q\) None 50.8.a.d \(-8\) \(87\) \(0\) \(1366\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+87q^{3}+2^{6}q^{4}-696q^{6}+\cdots\)
50.8.a.e 50.a 1.a $1$ $15.619$ \(\Q\) None 50.8.a.d \(8\) \(-87\) \(0\) \(-1366\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}-87q^{3}+2^{6}q^{4}-696q^{6}+\cdots\)
50.8.a.f 50.a 1.a $1$ $15.619$ \(\Q\) None 50.8.a.c \(8\) \(-57\) \(0\) \(1174\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}-57q^{3}+2^{6}q^{4}-456q^{6}+\cdots\)
50.8.a.g 50.a 1.a $1$ $15.619$ \(\Q\) None 2.8.a.a \(8\) \(-12\) \(0\) \(-1016\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}-12q^{3}+2^{6}q^{4}-96q^{6}-1016q^{7}+\cdots\)
50.8.a.h 50.a 1.a $1$ $15.619$ \(\Q\) None 50.8.a.a \(8\) \(43\) \(0\) \(974\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+43q^{3}+2^{6}q^{4}+344q^{6}+\cdots\)
50.8.a.i 50.a 1.a $2$ $15.619$ \(\Q(\sqrt{31}) \) None 10.8.b.a \(-16\) \(-56\) \(0\) \(-408\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+(-28+\beta )q^{3}+2^{6}q^{4}+(224+\cdots)q^{6}+\cdots\)
50.8.a.j 50.a 1.a $2$ $15.619$ \(\Q(\sqrt{31}) \) None 10.8.b.a \(16\) \(56\) \(0\) \(408\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+(28+\beta )q^{3}+2^{6}q^{4}+(224+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(50))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(50)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)