Properties

Label 504.2
Level 504
Weight 2
Dimension 2860
Nonzero newspaces 30
Newform subspaces 81
Sturm bound 27648
Trace bound 25

Downloads

Learn more

Defining parameters

Level: N N = 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7
Weight: k k = 2 2
Nonzero newspaces: 30 30
Newform subspaces: 81 81
Sturm bound: 2764827648
Trace bound: 2525

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(504))M_{2}(\Gamma_1(504)).

Total New Old
Modular forms 7488 3040 4448
Cusp forms 6337 2860 3477
Eisenstein series 1151 180 971

Trace form

2860q14q218q314q48q58q616q78q830q96q10+10q11+4q122q134q14+2q162q1724q1810q1920q20+180q99+O(q100) 2860 q - 14 q^{2} - 18 q^{3} - 14 q^{4} - 8 q^{5} - 8 q^{6} - 16 q^{7} - 8 q^{8} - 30 q^{9} - 6 q^{10} + 10 q^{11} + 4 q^{12} - 2 q^{13} - 4 q^{14} + 2 q^{16} - 2 q^{17} - 24 q^{18} - 10 q^{19} - 20 q^{20}+ \cdots - 180 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(504))S_{2}^{\mathrm{new}}(\Gamma_1(504))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
504.2.a χ504(1,)\chi_{504}(1, \cdot) 504.2.a.a 1 1
504.2.a.b 1
504.2.a.c 1
504.2.a.d 1
504.2.a.e 1
504.2.a.f 1
504.2.a.g 1
504.2.a.h 1
504.2.b χ504(55,)\chi_{504}(55, \cdot) None 0 1
504.2.c χ504(253,)\chi_{504}(253, \cdot) 504.2.c.a 2 1
504.2.c.b 4
504.2.c.c 4
504.2.c.d 4
504.2.c.e 8
504.2.c.f 8
504.2.h χ504(71,)\chi_{504}(71, \cdot) None 0 1
504.2.i χ504(125,)\chi_{504}(125, \cdot) 504.2.i.a 8 1
504.2.i.b 24
504.2.j χ504(323,)\chi_{504}(323, \cdot) 504.2.j.a 24 1
504.2.k χ504(377,)\chi_{504}(377, \cdot) 504.2.k.a 8 1
504.2.p χ504(307,)\chi_{504}(307, \cdot) 504.2.p.a 2 1
504.2.p.b 4
504.2.p.c 4
504.2.p.d 4
504.2.p.e 4
504.2.p.f 4
504.2.p.g 16
504.2.q χ504(25,)\chi_{504}(25, \cdot) 504.2.q.a 2 2
504.2.q.b 2
504.2.q.c 22
504.2.q.d 22
504.2.r χ504(169,)\chi_{504}(169, \cdot) 504.2.r.a 2 2
504.2.r.b 2
504.2.r.c 6
504.2.r.d 8
504.2.r.e 8
504.2.r.f 10
504.2.s χ504(289,)\chi_{504}(289, \cdot) 504.2.s.a 2 2
504.2.s.b 2
504.2.s.c 2
504.2.s.d 2
504.2.s.e 2
504.2.s.f 2
504.2.s.g 2
504.2.s.h 2
504.2.s.i 4
504.2.t χ504(193,)\chi_{504}(193, \cdot) 504.2.t.a 2 2
504.2.t.b 2
504.2.t.c 22
504.2.t.d 22
504.2.w χ504(205,)\chi_{504}(205, \cdot) 504.2.w.a 184 2
504.2.x χ504(31,)\chi_{504}(31, \cdot) None 0 2
504.2.y χ504(173,)\chi_{504}(173, \cdot) 504.2.y.a 184 2
504.2.z χ504(95,)\chi_{504}(95, \cdot) None 0 2
504.2.be χ504(139,)\chi_{504}(139, \cdot) 504.2.be.a 184 2
504.2.bf χ504(115,)\chi_{504}(115, \cdot) 504.2.bf.a 4 2
504.2.bf.b 180
504.2.bk χ504(19,)\chi_{504}(19, \cdot) 504.2.bk.a 12 2
504.2.bk.b 32
504.2.bk.c 32
504.2.bl χ504(17,)\chi_{504}(17, \cdot) 504.2.bl.a 16 2
504.2.bm χ504(107,)\chi_{504}(107, \cdot) 504.2.bm.a 8 2
504.2.bm.b 8
504.2.bm.c 48
504.2.br χ504(155,)\chi_{504}(155, \cdot) 504.2.br.a 144 2
504.2.bs χ504(257,)\chi_{504}(257, \cdot) 504.2.bs.a 48 2
504.2.bt χ504(11,)\chi_{504}(11, \cdot) 504.2.bt.a 184 2
504.2.bu χ504(41,)\chi_{504}(41, \cdot) 504.2.bu.a 48 2
504.2.bz χ504(239,)\chi_{504}(239, \cdot) None 0 2
504.2.ca χ504(5,)\chi_{504}(5, \cdot) 504.2.ca.a 184 2
504.2.cb χ504(23,)\chi_{504}(23, \cdot) None 0 2
504.2.cc χ504(293,)\chi_{504}(293, \cdot) 504.2.cc.a 16 2
504.2.cc.b 168
504.2.ch χ504(269,)\chi_{504}(269, \cdot) 504.2.ch.a 8 2
504.2.ch.b 56
504.2.ci χ504(359,)\chi_{504}(359, \cdot) None 0 2
504.2.cj χ504(37,)\chi_{504}(37, \cdot) 504.2.cj.a 8 2
504.2.cj.b 8
504.2.cj.c 12
504.2.cj.d 16
504.2.cj.e 32
504.2.ck χ504(199,)\chi_{504}(199, \cdot) None 0 2
504.2.cp χ504(223,)\chi_{504}(223, \cdot) None 0 2
504.2.cq χ504(277,)\chi_{504}(277, \cdot) 504.2.cq.a 184 2
504.2.cr χ504(103,)\chi_{504}(103, \cdot) None 0 2
504.2.cs χ504(85,)\chi_{504}(85, \cdot) 504.2.cs.a 72 2
504.2.cs.b 72
504.2.cx χ504(185,)\chi_{504}(185, \cdot) 504.2.cx.a 48 2
504.2.cy χ504(347,)\chi_{504}(347, \cdot) 504.2.cy.a 184 2
504.2.cz χ504(187,)\chi_{504}(187, \cdot) 504.2.cz.a 4 2
504.2.cz.b 180

Decomposition of S2old(Γ1(504))S_{2}^{\mathrm{old}}(\Gamma_1(504)) into lower level spaces

S2old(Γ1(504)) S_{2}^{\mathrm{old}}(\Gamma_1(504)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))24^{\oplus 24}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))18^{\oplus 18}\oplusS2new(Γ1(3))S_{2}^{\mathrm{new}}(\Gamma_1(3))16^{\oplus 16}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS2new(Γ1(6))S_{2}^{\mathrm{new}}(\Gamma_1(6))12^{\oplus 12}\oplusS2new(Γ1(7))S_{2}^{\mathrm{new}}(\Gamma_1(7))12^{\oplus 12}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))6^{\oplus 6}\oplusS2new(Γ1(9))S_{2}^{\mathrm{new}}(\Gamma_1(9))8^{\oplus 8}\oplusS2new(Γ1(12))S_{2}^{\mathrm{new}}(\Gamma_1(12))8^{\oplus 8}\oplusS2new(Γ1(14))S_{2}^{\mathrm{new}}(\Gamma_1(14))9^{\oplus 9}\oplusS2new(Γ1(18))S_{2}^{\mathrm{new}}(\Gamma_1(18))6^{\oplus 6}\oplusS2new(Γ1(21))S_{2}^{\mathrm{new}}(\Gamma_1(21))8^{\oplus 8}\oplusS2new(Γ1(24))S_{2}^{\mathrm{new}}(\Gamma_1(24))4^{\oplus 4}\oplusS2new(Γ1(28))S_{2}^{\mathrm{new}}(\Gamma_1(28))6^{\oplus 6}\oplusS2new(Γ1(36))S_{2}^{\mathrm{new}}(\Gamma_1(36))4^{\oplus 4}\oplusS2new(Γ1(42))S_{2}^{\mathrm{new}}(\Gamma_1(42))6^{\oplus 6}\oplusS2new(Γ1(56))S_{2}^{\mathrm{new}}(\Gamma_1(56))3^{\oplus 3}\oplusS2new(Γ1(63))S_{2}^{\mathrm{new}}(\Gamma_1(63))4^{\oplus 4}\oplusS2new(Γ1(72))S_{2}^{\mathrm{new}}(\Gamma_1(72))2^{\oplus 2}\oplusS2new(Γ1(84))S_{2}^{\mathrm{new}}(\Gamma_1(84))4^{\oplus 4}\oplusS2new(Γ1(126))S_{2}^{\mathrm{new}}(\Gamma_1(126))3^{\oplus 3}\oplusS2new(Γ1(168))S_{2}^{\mathrm{new}}(\Gamma_1(168))2^{\oplus 2}\oplusS2new(Γ1(252))S_{2}^{\mathrm{new}}(\Gamma_1(252))2^{\oplus 2}