Properties

Label 504.2
Level 504
Weight 2
Dimension 2860
Nonzero newspaces 30
Newform subspaces 81
Sturm bound 27648
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 30 \)
Newform subspaces: \( 81 \)
Sturm bound: \(27648\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(504))\).

Total New Old
Modular forms 7488 3040 4448
Cusp forms 6337 2860 3477
Eisenstein series 1151 180 971

Trace form

\( 2860 q - 14 q^{2} - 18 q^{3} - 14 q^{4} - 8 q^{5} - 8 q^{6} - 16 q^{7} - 8 q^{8} - 30 q^{9} - 6 q^{10} + 10 q^{11} + 4 q^{12} - 2 q^{13} - 4 q^{14} + 2 q^{16} - 2 q^{17} - 24 q^{18} - 10 q^{19} - 20 q^{20}+ \cdots - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(504))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
504.2.a \(\chi_{504}(1, \cdot)\) 504.2.a.a 1 1
504.2.a.b 1
504.2.a.c 1
504.2.a.d 1
504.2.a.e 1
504.2.a.f 1
504.2.a.g 1
504.2.a.h 1
504.2.b \(\chi_{504}(55, \cdot)\) None 0 1
504.2.c \(\chi_{504}(253, \cdot)\) 504.2.c.a 2 1
504.2.c.b 4
504.2.c.c 4
504.2.c.d 4
504.2.c.e 8
504.2.c.f 8
504.2.h \(\chi_{504}(71, \cdot)\) None 0 1
504.2.i \(\chi_{504}(125, \cdot)\) 504.2.i.a 8 1
504.2.i.b 24
504.2.j \(\chi_{504}(323, \cdot)\) 504.2.j.a 24 1
504.2.k \(\chi_{504}(377, \cdot)\) 504.2.k.a 8 1
504.2.p \(\chi_{504}(307, \cdot)\) 504.2.p.a 2 1
504.2.p.b 4
504.2.p.c 4
504.2.p.d 4
504.2.p.e 4
504.2.p.f 4
504.2.p.g 16
504.2.q \(\chi_{504}(25, \cdot)\) 504.2.q.a 2 2
504.2.q.b 2
504.2.q.c 22
504.2.q.d 22
504.2.r \(\chi_{504}(169, \cdot)\) 504.2.r.a 2 2
504.2.r.b 2
504.2.r.c 6
504.2.r.d 8
504.2.r.e 8
504.2.r.f 10
504.2.s \(\chi_{504}(289, \cdot)\) 504.2.s.a 2 2
504.2.s.b 2
504.2.s.c 2
504.2.s.d 2
504.2.s.e 2
504.2.s.f 2
504.2.s.g 2
504.2.s.h 2
504.2.s.i 4
504.2.t \(\chi_{504}(193, \cdot)\) 504.2.t.a 2 2
504.2.t.b 2
504.2.t.c 22
504.2.t.d 22
504.2.w \(\chi_{504}(205, \cdot)\) 504.2.w.a 184 2
504.2.x \(\chi_{504}(31, \cdot)\) None 0 2
504.2.y \(\chi_{504}(173, \cdot)\) 504.2.y.a 184 2
504.2.z \(\chi_{504}(95, \cdot)\) None 0 2
504.2.be \(\chi_{504}(139, \cdot)\) 504.2.be.a 184 2
504.2.bf \(\chi_{504}(115, \cdot)\) 504.2.bf.a 4 2
504.2.bf.b 180
504.2.bk \(\chi_{504}(19, \cdot)\) 504.2.bk.a 12 2
504.2.bk.b 32
504.2.bk.c 32
504.2.bl \(\chi_{504}(17, \cdot)\) 504.2.bl.a 16 2
504.2.bm \(\chi_{504}(107, \cdot)\) 504.2.bm.a 8 2
504.2.bm.b 8
504.2.bm.c 48
504.2.br \(\chi_{504}(155, \cdot)\) 504.2.br.a 144 2
504.2.bs \(\chi_{504}(257, \cdot)\) 504.2.bs.a 48 2
504.2.bt \(\chi_{504}(11, \cdot)\) 504.2.bt.a 184 2
504.2.bu \(\chi_{504}(41, \cdot)\) 504.2.bu.a 48 2
504.2.bz \(\chi_{504}(239, \cdot)\) None 0 2
504.2.ca \(\chi_{504}(5, \cdot)\) 504.2.ca.a 184 2
504.2.cb \(\chi_{504}(23, \cdot)\) None 0 2
504.2.cc \(\chi_{504}(293, \cdot)\) 504.2.cc.a 16 2
504.2.cc.b 168
504.2.ch \(\chi_{504}(269, \cdot)\) 504.2.ch.a 8 2
504.2.ch.b 56
504.2.ci \(\chi_{504}(359, \cdot)\) None 0 2
504.2.cj \(\chi_{504}(37, \cdot)\) 504.2.cj.a 8 2
504.2.cj.b 8
504.2.cj.c 12
504.2.cj.d 16
504.2.cj.e 32
504.2.ck \(\chi_{504}(199, \cdot)\) None 0 2
504.2.cp \(\chi_{504}(223, \cdot)\) None 0 2
504.2.cq \(\chi_{504}(277, \cdot)\) 504.2.cq.a 184 2
504.2.cr \(\chi_{504}(103, \cdot)\) None 0 2
504.2.cs \(\chi_{504}(85, \cdot)\) 504.2.cs.a 72 2
504.2.cs.b 72
504.2.cx \(\chi_{504}(185, \cdot)\) 504.2.cx.a 48 2
504.2.cy \(\chi_{504}(347, \cdot)\) 504.2.cy.a 184 2
504.2.cz \(\chi_{504}(187, \cdot)\) 504.2.cz.a 4 2
504.2.cz.b 180

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(504))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(504)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(252))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(504))\)\(^{\oplus 1}\)