Defining parameters
Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 504.cx (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Sturm bound: | \(576\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(504, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 976 | 240 | 736 |
Cusp forms | 944 | 240 | 704 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(504, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{6}^{\mathrm{old}}(504, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)