Properties

Label 504.6.s
Level $504$
Weight $6$
Character orbit 504.s
Rep. character $\chi_{504}(289,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $100$
Newform subspaces $8$
Sturm bound $576$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 504.s (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(576\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(504, [\chi])\).

Total New Old
Modular forms 992 100 892
Cusp forms 928 100 828
Eisenstein series 64 0 64

Trace form

\( 100 q - 50 q^{5} - 24 q^{7} - 10 q^{11} - 560 q^{13} - 614 q^{17} - 2994 q^{19} + 722 q^{23} - 32020 q^{25} - 14464 q^{29} + 2238 q^{31} - 27162 q^{35} + 5414 q^{37} - 6384 q^{41} + 17288 q^{43} - 9426 q^{47}+ \cdots - 47152 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
504.6.s.a 504.s 7.c $8$ $80.833$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 168.6.q.a \(0\) \(0\) \(-64\) \(42\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2^{4}\beta _{1}-\beta _{2})q^{5}+(22-31\beta _{1}-3\beta _{3}+\cdots)q^{7}+\cdots\)
504.6.s.b 504.s 7.c $10$ $80.833$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 56.6.i.b \(0\) \(0\) \(-81\) \(116\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2^{4}-2^{4}\beta _{3}-\beta _{4}-\beta _{5})q^{5}+(15+\cdots)q^{7}+\cdots\)
504.6.s.c 504.s 7.c $10$ $80.833$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 168.6.q.c \(0\) \(0\) \(6\) \(-97\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{5})q^{5}+(-5-9\beta _{1}+\beta _{3}+\beta _{5}+\cdots)q^{7}+\cdots\)
504.6.s.d 504.s 7.c $10$ $80.833$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 56.6.i.a \(0\) \(0\) \(31\) \(-92\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-6\beta _{1}+\beta _{5}+\beta _{7})q^{5}+(-2^{4}-13\beta _{1}+\cdots)q^{7}+\cdots\)
504.6.s.e 504.s 7.c $10$ $80.833$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 168.6.q.b \(0\) \(0\) \(75\) \(-113\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-15\beta _{1}-\beta _{2}+\beta _{4})q^{5}+(-13-3\beta _{1}+\cdots)q^{7}+\cdots\)
504.6.s.f 504.s 7.c $12$ $80.833$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 168.6.q.d \(0\) \(0\) \(-17\) \(144\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-3\beta _{1}-\beta _{2}+\beta _{4})q^{5}+(8+9\beta _{1}+\cdots)q^{7}+\cdots\)
504.6.s.g 504.s 7.c $20$ $80.833$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 504.6.s.g \(0\) \(0\) \(-19\) \(-12\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}-2\beta _{2}-\beta _{3})q^{5}+(2-5\beta _{2}+\cdots)q^{7}+\cdots\)
504.6.s.h 504.s 7.c $20$ $80.833$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 504.6.s.g \(0\) \(0\) \(19\) \(-12\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+2\beta _{2}+\beta _{3})q^{5}+(2-5\beta _{2}+\beta _{6}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(504, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)