Properties

Label 5040.2.t
Level 50405040
Weight 22
Character orbit 5040.t
Rep. character χ5040(1009,)\chi_{5040}(1009,\cdot)
Character field Q\Q
Dimension 9090
Newform subspaces 2828
Sturm bound 23042304
Trace bound 1919

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 5040=243257 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5040.t (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 28 28
Sturm bound: 23042304
Trace bound: 1919
Distinguishing TpT_p: 1111, 1313, 1717, 1919, 2929

Dimensions

The following table gives the dimensions of various subspaces of M2(5040,[χ])M_{2}(5040, [\chi]).

Total New Old
Modular forms 1200 90 1110
Cusp forms 1104 90 1014
Eisenstein series 96 0 96

Trace form

90q+2q5+12q118q19+2q254q29+8q314q4190q4940q5512q6140q7128q798q85+20q8912q91+32q95+O(q100) 90 q + 2 q^{5} + 12 q^{11} - 8 q^{19} + 2 q^{25} - 4 q^{29} + 8 q^{31} - 4 q^{41} - 90 q^{49} - 40 q^{55} - 12 q^{61} - 40 q^{71} - 28 q^{79} - 8 q^{85} + 20 q^{89} - 12 q^{91} + 32 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(5040,[χ])S_{2}^{\mathrm{new}}(5040, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
5040.2.t.a 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 280.2.g.a 00 00 4-4 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i2)q5iq7q11iq13+q+(i-2)q^{5}-i q^{7}-q^{11}-i q^{13}+\cdots
5040.2.t.b 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 630.2.g.a 00 00 4-4 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i2)q5iq74iq13+q+(-i-2)q^{5}-i q^{7}-4 i q^{13}+\cdots
5040.2.t.c 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 315.2.d.b 00 00 4-4 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i2)q5iq7+4iq13+2iq17+q+(i-2)q^{5}-i q^{7}+4 i q^{13}+2 i q^{17}+\cdots
5040.2.t.d 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 420.2.k.b 00 00 4-4 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i2)q5+iq7+4q11+2iq13+q+(-i-2)q^{5}+i q^{7}+4 q^{11}+2 i q^{13}+\cdots
5040.2.t.e 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 105.2.d.a 00 00 2-2 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i1)q5iq76q112iq13+q+(2 i-1)q^{5}-i q^{7}-6 q^{11}-2 i q^{13}+\cdots
5040.2.t.f 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 2520.2.t.b 00 00 2-2 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i1)q5+iq72q11+q+(-2 i-1)q^{5}+i q^{7}-2 q^{11}+\cdots
5040.2.t.g 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 140.2.e.b 00 00 2-2 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i1)q5iq74iq13+q+(-2 i-1)q^{5}-i q^{7}-4 i q^{13}+\cdots
5040.2.t.h 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 210.2.g.b 00 00 2-2 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i1)q5iq7+2q11+q+(-2 i-1)q^{5}-i q^{7}+2 q^{11}+\cdots
5040.2.t.i 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 630.2.g.b 00 00 2-2 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i1)q5iq7+6q11+q+(-2 i-1)q^{5}-i q^{7}+6 q^{11}+\cdots
5040.2.t.j 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 630.2.g.b 00 00 22 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i+1)q5iq76q11+2iq13+q+(2 i+1)q^{5}-i q^{7}-6 q^{11}+2 i q^{13}+\cdots
5040.2.t.k 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 210.2.g.a 00 00 22 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i+1)q5+iq72q11+2iq13+q+(2 i+1)q^{5}+i q^{7}-2 q^{11}+2 i q^{13}+\cdots
5040.2.t.l 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 840.2.t.b 00 00 22 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i+1)q5+iq7+2q11+q+(-2 i+1)q^{5}+i q^{7}+2 q^{11}+\cdots
5040.2.t.m 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 2520.2.t.b 00 00 22 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i+1)q5+iq7+2q112iq13+q+(2 i+1)q^{5}+i q^{7}+2 q^{11}-2 i q^{13}+\cdots
5040.2.t.n 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 840.2.t.a 00 00 22 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(2i+1)q5+iq7+2q112iq13+q+(2 i+1)q^{5}+i q^{7}+2 q^{11}-2 i q^{13}+\cdots
5040.2.t.o 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 420.2.k.a 00 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i+2)q5iq74q11+6iq13+q+(i+2)q^{5}-i q^{7}-4 q^{11}+6 i q^{13}+\cdots
5040.2.t.p 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 35.2.b.a 00 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i+2)q5+iq73q11iq13+q+(i+2)q^{5}+i q^{7}-3 q^{11}-i q^{13}+\cdots
5040.2.t.q 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 630.2.g.a 00 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i+2)q5+iq7+4iq13+q+(-i+2)q^{5}+i q^{7}+4 i q^{13}+\cdots
5040.2.t.r 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 315.2.d.b 00 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i+2)q5+iq74iq13+2iq17+q+(i+2)q^{5}+i q^{7}-4 i q^{13}+2 i q^{17}+\cdots
5040.2.t.s 5040.t 5.b 22 40.24540.245 Q(1)\Q(\sqrt{-1}) None 140.2.e.a 00 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(i+2)q5+iq7+3q11+iq13+q+(-i+2)q^{5}+i q^{7}+3 q^{11}+i q^{13}+\cdots
5040.2.t.t 5040.t 5.b 44 40.24540.245 Q(i,6)\Q(i, \sqrt{6}) None 70.2.c.a 00 00 4-4 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(1β2β3)q5+β2q7+(2β1+)q11+q+(-1-\beta _{2}-\beta _{3})q^{5}+\beta _{2}q^{7}+(2\beta _{1}+\cdots)q^{11}+\cdots
5040.2.t.u 5040.t 5.b 44 40.24540.245 Q(i,5)\Q(i, \sqrt{5}) None 840.2.t.c 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β3q5+β1q72q11+2β2q13+q+\beta _{3}q^{5}+\beta _{1}q^{7}-2q^{11}+2\beta _{2}q^{13}+\cdots
5040.2.t.v 5040.t 5.b 66 40.24540.245 6.0.350464.1 None 105.2.d.b 00 00 2-2 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ2q5+β1q7+2q11+(2β1β2+)q13+q-\beta _{2}q^{5}+\beta _{1}q^{7}+2q^{11}+(2\beta _{1}-\beta _{2}+\cdots)q^{13}+\cdots
5040.2.t.w 5040.t 5.b 66 40.24540.245 6.0.350464.1 None 2520.2.t.h 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β3q5+β1q7+(2+β2β3+)q11+q+\beta _{3}q^{5}+\beta _{1}q^{7}+(-2+\beta _{2}-\beta _{3}+\cdots)q^{11}+\cdots
5040.2.t.x 5040.t 5.b 66 40.24540.245 6.0.350464.1 None 2520.2.t.h 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ3q5+β1q7+(2β2+β3+β4+)q11+q-\beta _{3}q^{5}+\beta _{1}q^{7}+(2-\beta _{2}+\beta _{3}+\beta _{4}+\cdots)q^{11}+\cdots
5040.2.t.y 5040.t 5.b 66 40.24540.245 6.0.5161984.1 None 280.2.g.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(β1+β5)q5β4q7+(2β1+)q11+q+(-\beta _{1}+\beta _{5})q^{5}-\beta _{4}q^{7}+(2-\beta _{1}+\cdots)q^{11}+\cdots
5040.2.t.z 5040.t 5.b 66 40.24540.245 6.0.350464.1 None 840.2.t.d 00 00 22 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ5q5+β1q7+(β2β3β4+)q11+q-\beta _{5}q^{5}+\beta _{1}q^{7}+(-\beta _{2}-\beta _{3}-\beta _{4}+\cdots)q^{11}+\cdots
5040.2.t.ba 5040.t 5.b 66 40.24540.245 6.0.350464.1 None 840.2.t.e 00 00 22 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ5q5β1q7+(β2β3β4β5)q11+q-\beta _{5}q^{5}-\beta _{1}q^{7}+(\beta _{2}-\beta _{3}-\beta _{4}-\beta _{5})q^{11}+\cdots
5040.2.t.bb 5040.t 5.b 88 40.24540.245 8.0.49787136.1 None 1260.2.k.e 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β7q5+β1q7+(β3+β4+β5+β7)q11+q+\beta _{7}q^{5}+\beta _{1}q^{7}+(\beta _{3}+\beta _{4}+\beta _{5}+\beta _{7})q^{11}+\cdots

Decomposition of S2old(5040,[χ])S_{2}^{\mathrm{old}}(5040, [\chi]) into lower level spaces

S2old(5040,[χ]) S_{2}^{\mathrm{old}}(5040, [\chi]) \simeq S2new(30,[χ])S_{2}^{\mathrm{new}}(30, [\chi])16^{\oplus 16}\oplusS2new(35,[χ])S_{2}^{\mathrm{new}}(35, [\chi])15^{\oplus 15}\oplusS2new(40,[χ])S_{2}^{\mathrm{new}}(40, [\chi])12^{\oplus 12}\oplusS2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])10^{\oplus 10}\oplusS2new(60,[χ])S_{2}^{\mathrm{new}}(60, [\chi])12^{\oplus 12}\oplusS2new(70,[χ])S_{2}^{\mathrm{new}}(70, [\chi])12^{\oplus 12}\oplusS2new(80,[χ])S_{2}^{\mathrm{new}}(80, [\chi])6^{\oplus 6}\oplusS2new(90,[χ])S_{2}^{\mathrm{new}}(90, [\chi])8^{\oplus 8}\oplusS2new(105,[χ])S_{2}^{\mathrm{new}}(105, [\chi])10^{\oplus 10}\oplusS2new(120,[χ])S_{2}^{\mathrm{new}}(120, [\chi])8^{\oplus 8}\oplusS2new(140,[χ])S_{2}^{\mathrm{new}}(140, [\chi])9^{\oplus 9}\oplusS2new(180,[χ])S_{2}^{\mathrm{new}}(180, [\chi])6^{\oplus 6}\oplusS2new(210,[χ])S_{2}^{\mathrm{new}}(210, [\chi])8^{\oplus 8}\oplusS2new(240,[χ])S_{2}^{\mathrm{new}}(240, [\chi])4^{\oplus 4}\oplusS2new(280,[χ])S_{2}^{\mathrm{new}}(280, [\chi])6^{\oplus 6}\oplusS2new(315,[χ])S_{2}^{\mathrm{new}}(315, [\chi])5^{\oplus 5}\oplusS2new(360,[χ])S_{2}^{\mathrm{new}}(360, [\chi])4^{\oplus 4}\oplusS2new(420,[χ])S_{2}^{\mathrm{new}}(420, [\chi])6^{\oplus 6}\oplusS2new(560,[χ])S_{2}^{\mathrm{new}}(560, [\chi])3^{\oplus 3}\oplusS2new(630,[χ])S_{2}^{\mathrm{new}}(630, [\chi])4^{\oplus 4}\oplusS2new(720,[χ])S_{2}^{\mathrm{new}}(720, [\chi])2^{\oplus 2}\oplusS2new(840,[χ])S_{2}^{\mathrm{new}}(840, [\chi])4^{\oplus 4}\oplusS2new(1260,[χ])S_{2}^{\mathrm{new}}(1260, [\chi])3^{\oplus 3}\oplusS2new(1680,[χ])S_{2}^{\mathrm{new}}(1680, [\chi])2^{\oplus 2}\oplusS2new(2520,[χ])S_{2}^{\mathrm{new}}(2520, [\chi])2^{\oplus 2}