Properties

Label 5040.2.t
Level $5040$
Weight $2$
Character orbit 5040.t
Rep. character $\chi_{5040}(1009,\cdot)$
Character field $\Q$
Dimension $90$
Newform subspaces $28$
Sturm bound $2304$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5040 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5040.t (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 28 \)
Sturm bound: \(2304\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(11\), \(13\), \(17\), \(19\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(5040, [\chi])\).

Total New Old
Modular forms 1200 90 1110
Cusp forms 1104 90 1014
Eisenstein series 96 0 96

Trace form

\( 90 q + 2 q^{5} + 12 q^{11} - 8 q^{19} + 2 q^{25} - 4 q^{29} + 8 q^{31} - 4 q^{41} - 90 q^{49} - 40 q^{55} - 12 q^{61} - 40 q^{71} - 28 q^{79} - 8 q^{85} + 20 q^{89} - 12 q^{91} + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(5040, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
5040.2.t.a 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 280.2.g.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-2)q^{5}-i q^{7}-q^{11}-i q^{13}+\cdots\)
5040.2.t.b 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 630.2.g.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-2)q^{5}-i q^{7}-4 i q^{13}+\cdots\)
5040.2.t.c 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 315.2.d.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-2)q^{5}-i q^{7}+4 i q^{13}+2 i q^{17}+\cdots\)
5040.2.t.d 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 420.2.k.b \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-2)q^{5}+i q^{7}+4 q^{11}+2 i q^{13}+\cdots\)
5040.2.t.e 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 105.2.d.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i-1)q^{5}-i q^{7}-6 q^{11}-2 i q^{13}+\cdots\)
5040.2.t.f 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 2520.2.t.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2 i-1)q^{5}+i q^{7}-2 q^{11}+\cdots\)
5040.2.t.g 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 140.2.e.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2 i-1)q^{5}-i q^{7}-4 i q^{13}+\cdots\)
5040.2.t.h 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 210.2.g.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2 i-1)q^{5}-i q^{7}+2 q^{11}+\cdots\)
5040.2.t.i 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 630.2.g.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2 i-1)q^{5}-i q^{7}+6 q^{11}+\cdots\)
5040.2.t.j 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 630.2.g.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i+1)q^{5}-i q^{7}-6 q^{11}+2 i q^{13}+\cdots\)
5040.2.t.k 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 210.2.g.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i+1)q^{5}+i q^{7}-2 q^{11}+2 i q^{13}+\cdots\)
5040.2.t.l 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 840.2.t.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2 i+1)q^{5}+i q^{7}+2 q^{11}+\cdots\)
5040.2.t.m 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 2520.2.t.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i+1)q^{5}+i q^{7}+2 q^{11}-2 i q^{13}+\cdots\)
5040.2.t.n 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 840.2.t.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i+1)q^{5}+i q^{7}+2 q^{11}-2 i q^{13}+\cdots\)
5040.2.t.o 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 420.2.k.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+2)q^{5}-i q^{7}-4 q^{11}+6 i q^{13}+\cdots\)
5040.2.t.p 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 35.2.b.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+2)q^{5}+i q^{7}-3 q^{11}-i q^{13}+\cdots\)
5040.2.t.q 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 630.2.g.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+2)q^{5}+i q^{7}+4 i q^{13}+\cdots\)
5040.2.t.r 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 315.2.d.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i+2)q^{5}+i q^{7}-4 i q^{13}+2 i q^{17}+\cdots\)
5040.2.t.s 5040.t 5.b $2$ $40.245$ \(\Q(\sqrt{-1}) \) None 140.2.e.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+2)q^{5}+i q^{7}+3 q^{11}+i q^{13}+\cdots\)
5040.2.t.t 5040.t 5.b $4$ $40.245$ \(\Q(i, \sqrt{6})\) None 70.2.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta _{2}-\beta _{3})q^{5}+\beta _{2}q^{7}+(2\beta _{1}+\cdots)q^{11}+\cdots\)
5040.2.t.u 5040.t 5.b $4$ $40.245$ \(\Q(i, \sqrt{5})\) None 840.2.t.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{5}+\beta _{1}q^{7}-2q^{11}+2\beta _{2}q^{13}+\cdots\)
5040.2.t.v 5040.t 5.b $6$ $40.245$ 6.0.350464.1 None 105.2.d.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{5}+\beta _{1}q^{7}+2q^{11}+(2\beta _{1}-\beta _{2}+\cdots)q^{13}+\cdots\)
5040.2.t.w 5040.t 5.b $6$ $40.245$ 6.0.350464.1 None 2520.2.t.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{5}+\beta _{1}q^{7}+(-2+\beta _{2}-\beta _{3}+\cdots)q^{11}+\cdots\)
5040.2.t.x 5040.t 5.b $6$ $40.245$ 6.0.350464.1 None 2520.2.t.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{5}+\beta _{1}q^{7}+(2-\beta _{2}+\beta _{3}+\beta _{4}+\cdots)q^{11}+\cdots\)
5040.2.t.y 5040.t 5.b $6$ $40.245$ 6.0.5161984.1 None 280.2.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{5})q^{5}-\beta _{4}q^{7}+(2-\beta _{1}+\cdots)q^{11}+\cdots\)
5040.2.t.z 5040.t 5.b $6$ $40.245$ 6.0.350464.1 None 840.2.t.d \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{5}+\beta _{1}q^{7}+(-\beta _{2}-\beta _{3}-\beta _{4}+\cdots)q^{11}+\cdots\)
5040.2.t.ba 5040.t 5.b $6$ $40.245$ 6.0.350464.1 None 840.2.t.e \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{5}-\beta _{1}q^{7}+(\beta _{2}-\beta _{3}-\beta _{4}-\beta _{5})q^{11}+\cdots\)
5040.2.t.bb 5040.t 5.b $8$ $40.245$ 8.0.49787136.1 None 1260.2.k.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{7}q^{5}+\beta _{1}q^{7}+(\beta _{3}+\beta _{4}+\beta _{5}+\beta _{7})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(5040, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(5040, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(630, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(720, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(840, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1260, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1680, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2520, [\chi])\)\(^{\oplus 2}\)