Properties

Label 507.4
Level 507
Weight 4
Dimension 20838
Nonzero newspaces 12
Sturm bound 75712
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(75712\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(507))\).

Total New Old
Modular forms 28848 21246 7602
Cusp forms 27936 20838 7098
Eisenstein series 912 408 504

Trace form

\( 20838 q - 66 q^{3} - 132 q^{4} - 66 q^{6} - 276 q^{7} - 288 q^{8} - 66 q^{9} + 228 q^{10} + 240 q^{11} + 402 q^{12} + 144 q^{13} + 480 q^{14} + 78 q^{15} - 132 q^{16} - 756 q^{17} - 1398 q^{18} - 1908 q^{19}+ \cdots + 22710 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(507))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
507.4.a \(\chi_{507}(1, \cdot)\) 507.4.a.a 1 1
507.4.a.b 1
507.4.a.c 1
507.4.a.d 1
507.4.a.e 1
507.4.a.f 2
507.4.a.g 2
507.4.a.h 3
507.4.a.i 4
507.4.a.j 4
507.4.a.k 4
507.4.a.l 4
507.4.a.m 4
507.4.a.n 9
507.4.a.o 9
507.4.a.p 9
507.4.a.q 9
507.4.a.r 10
507.4.b \(\chi_{507}(337, \cdot)\) 507.4.b.a 2 1
507.4.b.b 2
507.4.b.c 2
507.4.b.d 2
507.4.b.e 4
507.4.b.f 4
507.4.b.g 6
507.4.b.h 8
507.4.b.i 10
507.4.b.j 18
507.4.b.k 18
507.4.e \(\chi_{507}(22, \cdot)\) n/a 156 2
507.4.f \(\chi_{507}(239, \cdot)\) n/a 288 2
507.4.j \(\chi_{507}(316, \cdot)\) n/a 152 2
507.4.k \(\chi_{507}(80, \cdot)\) n/a 576 4
507.4.m \(\chi_{507}(40, \cdot)\) n/a 1080 12
507.4.p \(\chi_{507}(25, \cdot)\) n/a 1104 12
507.4.q \(\chi_{507}(16, \cdot)\) n/a 2160 24
507.4.s \(\chi_{507}(5, \cdot)\) n/a 4320 24
507.4.t \(\chi_{507}(4, \cdot)\) n/a 2208 24
507.4.x \(\chi_{507}(2, \cdot)\) n/a 8640 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(507))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(507)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 1}\)