Defining parameters
Level: | \( N \) | = | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(75712\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(507))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28848 | 21246 | 7602 |
Cusp forms | 27936 | 20838 | 7098 |
Eisenstein series | 912 | 408 | 504 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(507))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
507.4.a | \(\chi_{507}(1, \cdot)\) | 507.4.a.a | 1 | 1 |
507.4.a.b | 1 | |||
507.4.a.c | 1 | |||
507.4.a.d | 1 | |||
507.4.a.e | 1 | |||
507.4.a.f | 2 | |||
507.4.a.g | 2 | |||
507.4.a.h | 3 | |||
507.4.a.i | 4 | |||
507.4.a.j | 4 | |||
507.4.a.k | 4 | |||
507.4.a.l | 4 | |||
507.4.a.m | 4 | |||
507.4.a.n | 9 | |||
507.4.a.o | 9 | |||
507.4.a.p | 9 | |||
507.4.a.q | 9 | |||
507.4.a.r | 10 | |||
507.4.b | \(\chi_{507}(337, \cdot)\) | 507.4.b.a | 2 | 1 |
507.4.b.b | 2 | |||
507.4.b.c | 2 | |||
507.4.b.d | 2 | |||
507.4.b.e | 4 | |||
507.4.b.f | 4 | |||
507.4.b.g | 6 | |||
507.4.b.h | 8 | |||
507.4.b.i | 10 | |||
507.4.b.j | 18 | |||
507.4.b.k | 18 | |||
507.4.e | \(\chi_{507}(22, \cdot)\) | n/a | 156 | 2 |
507.4.f | \(\chi_{507}(239, \cdot)\) | n/a | 288 | 2 |
507.4.j | \(\chi_{507}(316, \cdot)\) | n/a | 152 | 2 |
507.4.k | \(\chi_{507}(80, \cdot)\) | n/a | 576 | 4 |
507.4.m | \(\chi_{507}(40, \cdot)\) | n/a | 1080 | 12 |
507.4.p | \(\chi_{507}(25, \cdot)\) | n/a | 1104 | 12 |
507.4.q | \(\chi_{507}(16, \cdot)\) | n/a | 2160 | 24 |
507.4.s | \(\chi_{507}(5, \cdot)\) | n/a | 4320 | 24 |
507.4.t | \(\chi_{507}(4, \cdot)\) | n/a | 2208 | 24 |
507.4.x | \(\chi_{507}(2, \cdot)\) | n/a | 8640 | 48 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(507))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(507)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 1}\)