Defining parameters
Level: | \( N \) | \(=\) | \( 51 = 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 51.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(51, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 38 | 32 | 6 |
Cusp forms | 34 | 32 | 2 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(51, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
51.7.b.a | $32$ | $11.733$ | None | \(0\) | \(32\) | \(0\) | \(568\) |
Decomposition of \(S_{7}^{\mathrm{old}}(51, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(51, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 2}\)