Properties

Label 51.7.b
Level $51$
Weight $7$
Character orbit 51.b
Rep. character $\chi_{51}(35,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $1$
Sturm bound $42$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 51.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(42\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(51, [\chi])\).

Total New Old
Modular forms 38 32 6
Cusp forms 34 32 2
Eisenstein series 4 0 4

Trace form

\( 32 q + 32 q^{3} - 1024 q^{4} + 286 q^{6} + 568 q^{7} - 912 q^{9} - 744 q^{10} + 194 q^{12} - 2312 q^{13} - 6240 q^{15} + 13208 q^{16} + 2936 q^{18} + 7936 q^{19} - 21688 q^{21} + 13176 q^{22} + 18282 q^{24}+ \cdots + 1619864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(51, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
51.7.b.a 51.b 3.b $32$ $11.733$ None 51.7.b.a \(0\) \(32\) \(0\) \(568\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{7}^{\mathrm{old}}(51, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(51, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 2}\)