Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M2(Γ0(510)).
|
Total |
New |
Old |
Modular forms
| 116 |
9 |
107 |
Cusp forms
| 101 |
9 |
92 |
Eisenstein series
| 15 |
0 |
15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 3 | 5 | 17 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | + | + | | 3 | 0 | 3 | | 3 | 0 | 3 | | 0 | 0 | 0 |
+ | + | + | − | − | | 10 | 1 | 9 | | 9 | 1 | 8 | | 1 | 0 | 1 |
+ | + | − | + | − | | 10 | 2 | 8 | | 9 | 2 | 7 | | 1 | 0 | 1 |
+ | + | − | − | + | | 6 | 0 | 6 | | 5 | 0 | 5 | | 1 | 0 | 1 |
+ | − | + | + | − | | 10 | 0 | 10 | | 9 | 0 | 9 | | 1 | 0 | 1 |
+ | − | + | − | + | | 6 | 0 | 6 | | 5 | 0 | 5 | | 1 | 0 | 1 |
+ | − | − | + | + | | 6 | 0 | 6 | | 5 | 0 | 5 | | 1 | 0 | 1 |
+ | − | − | − | − | | 7 | 1 | 6 | | 6 | 1 | 5 | | 1 | 0 | 1 |
− | + | + | + | − | | 6 | 1 | 5 | | 5 | 1 | 4 | | 1 | 0 | 1 |
− | + | + | − | + | | 8 | 1 | 7 | | 7 | 1 | 6 | | 1 | 0 | 1 |
− | + | − | + | + | | 7 | 0 | 7 | | 6 | 0 | 6 | | 1 | 0 | 1 |
− | + | − | − | − | | 8 | 1 | 7 | | 7 | 1 | 6 | | 1 | 0 | 1 |
− | − | + | + | + | | 10 | 0 | 10 | | 9 | 0 | 9 | | 1 | 0 | 1 |
− | − | + | − | − | | 5 | 1 | 4 | | 4 | 1 | 3 | | 1 | 0 | 1 |
− | − | − | + | − | | 6 | 1 | 5 | | 5 | 1 | 4 | | 1 | 0 | 1 |
− | − | − | − | + | | 8 | 0 | 8 | | 7 | 0 | 7 | | 1 | 0 | 1 |
Plus space | + | | 54 | 1 | 53 | | 47 | 1 | 46 | | 7 | 0 | 7 |
Minus space | − | | 62 | 8 | 54 | | 54 | 8 | 46 | | 8 | 0 | 8 |
Decomposition of S2new(Γ0(510)) into newform subspaces
Decomposition of S2old(Γ0(510)) into lower level spaces