Defining parameters
Level: | \( N \) | \(=\) | \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 510.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(510, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 12 | 104 |
Cusp forms | 100 | 12 | 88 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(510, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
510.2.c.a | $2$ | $4.072$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}+i q^{3}+q^{4}-i q^{5}-i q^{6}+\cdots\) |
510.2.c.b | $2$ | $4.072$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}+i q^{3}+q^{4}+i q^{5}+i q^{6}+\cdots\) |
510.2.c.c | $4$ | $4.072$ | \(\Q(i, \sqrt{13})\) | None | \(-4\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}-\beta _{1}q^{3}+q^{4}-\beta _{1}q^{5}+\beta _{1}q^{6}+\cdots\) |
510.2.c.d | $4$ | $4.072$ | \(\Q(\zeta_{8})\) | None | \(4\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}+\beta_1 q^{3}+q^{4}-\beta_1 q^{5}+\beta_1 q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(510, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(510, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 2}\)