Defining parameters
Level: | \( N \) | \(=\) | \( 512 = 2^{9} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 512.g (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 32 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(512, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 320 | 80 | 240 |
Cusp forms | 192 | 48 | 144 |
Eisenstein series | 128 | 32 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(512, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(512, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 2}\)