Defining parameters
Level: | \( N \) | \(=\) | \( 512 = 2^{9} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 512.i (of order \(16\) and degree \(8\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 64 \) |
Character field: | \(\Q(\zeta_{16})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(128\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(512, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 576 | 144 | 432 |
Cusp forms | 448 | 112 | 336 |
Eisenstein series | 128 | 32 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(512, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
512.2.i.a | $56$ | $4.088$ | None | \(0\) | \(-8\) | \(8\) | \(8\) | ||
512.2.i.b | $56$ | $4.088$ | None | \(0\) | \(8\) | \(8\) | \(-8\) |
Decomposition of \(S_{2}^{\mathrm{old}}(512, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 2}\)