Properties

Label 52.2.h
Level 5252
Weight 22
Character orbit 52.h
Rep. character χ52(17,)\chi_{52}(17,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 22
Newform subspaces 11
Sturm bound 1414
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 52=2213 52 = 2^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 52.h (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 1414
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(52,[χ])M_{2}(52, [\chi]).

Total New Old
Modular forms 20 2 18
Cusp forms 8 2 6
Eisenstein series 12 0 12

Trace form

2q+q33q7+2q99q112q133q17+9q193q23+10q25+10q27+9q299q339q37+5q399q415q434q496q5112q53+21q97+O(q100) 2 q + q^{3} - 3 q^{7} + 2 q^{9} - 9 q^{11} - 2 q^{13} - 3 q^{17} + 9 q^{19} - 3 q^{23} + 10 q^{25} + 10 q^{27} + 9 q^{29} - 9 q^{33} - 9 q^{37} + 5 q^{39} - 9 q^{41} - 5 q^{43} - 4 q^{49} - 6 q^{51} - 12 q^{53}+ \cdots - 21 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(52,[χ])S_{2}^{\mathrm{new}}(52, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
52.2.h.a 52.h 13.e 22 0.4150.415 Q(3)\Q(\sqrt{-3}) None 52.2.h.a 00 11 00 3-3 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1ζ6)q3+(2+ζ6)q7+2ζ6q9+q+(1-\zeta_{6})q^{3}+(-2+\zeta_{6})q^{7}+2\zeta_{6}q^{9}+\cdots

Decomposition of S2old(52,[χ])S_{2}^{\mathrm{old}}(52, [\chi]) into lower level spaces

S2old(52,[χ]) S_{2}^{\mathrm{old}}(52, [\chi]) \simeq S2new(13,[χ])S_{2}^{\mathrm{new}}(13, [\chi])3^{\oplus 3}