Properties

Label 52.2.h
Level $52$
Weight $2$
Character orbit 52.h
Rep. character $\chi_{52}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $14$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 52.h (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(14\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(52, [\chi])\).

Total New Old
Modular forms 20 2 18
Cusp forms 8 2 6
Eisenstein series 12 0 12

Trace form

\( 2 q + q^{3} - 3 q^{7} + 2 q^{9} - 9 q^{11} - 2 q^{13} - 3 q^{17} + 9 q^{19} - 3 q^{23} + 10 q^{25} + 10 q^{27} + 9 q^{29} - 9 q^{33} - 9 q^{37} + 5 q^{39} - 9 q^{41} - 5 q^{43} - 4 q^{49} - 6 q^{51} - 12 q^{53}+ \cdots - 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(52, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
52.2.h.a 52.h 13.e $2$ $0.415$ \(\Q(\sqrt{-3}) \) None 52.2.h.a \(0\) \(1\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\zeta_{6})q^{3}+(-2+\zeta_{6})q^{7}+2\zeta_{6}q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(52, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(52, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)