Properties

Label 52.3.k
Level $52$
Weight $3$
Character orbit 52.k
Rep. character $\chi_{52}(33,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $8$
Newform subspaces $1$
Sturm bound $21$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 52.k (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(21\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(52, [\chi])\).

Total New Old
Modular forms 68 8 60
Cusp forms 44 8 36
Eisenstein series 24 0 24

Trace form

\( 8 q + 6 q^{5} + 4 q^{7} - 6 q^{9} + 24 q^{11} + 18 q^{13} - 60 q^{15} - 54 q^{17} - 50 q^{19} - 54 q^{21} - 24 q^{23} + 36 q^{27} + 108 q^{29} + 176 q^{31} + 114 q^{33} - 30 q^{35} + 104 q^{37} + 120 q^{39}+ \cdots + 182 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(52, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
52.3.k.a 52.k 13.f $8$ $1.417$ 8.0.\(\cdots\).1 None 52.3.k.a \(0\) \(0\) \(6\) \(4\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{1}-\beta _{4}+\beta _{5})q^{3}+(-\beta _{2}+\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(52, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(52, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)