Defining parameters
Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 52.k (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(21\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(52, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 68 | 8 | 60 |
Cusp forms | 44 | 8 | 36 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(52, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
52.3.k.a | $8$ | $1.417$ | 8.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(6\) | \(4\) | \(q+(\beta _{1}-\beta _{4}+\beta _{5})q^{3}+(-\beta _{2}+\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(52, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(52, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)