Properties

Label 52.4
Level 52
Weight 4
Dimension 135
Nonzero newspaces 6
Newform subspaces 10
Sturm bound 672
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 10 \)
Sturm bound: \(672\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(52))\).

Total New Old
Modular forms 282 159 123
Cusp forms 222 135 87
Eisenstein series 60 24 36

Trace form

\( 135 q - 6 q^{2} - 6 q^{4} - 12 q^{5} - 6 q^{6} - 36 q^{7} - 6 q^{8} - 12 q^{9} - 6 q^{10} + 60 q^{11} + 132 q^{13} - 12 q^{14} + 72 q^{15} - 6 q^{16} + 81 q^{17} + 552 q^{18} - 36 q^{19} + 114 q^{20} - 252 q^{21}+ \cdots - 2772 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
52.4.a \(\chi_{52}(1, \cdot)\) 52.4.a.a 1 1
52.4.a.b 2
52.4.d \(\chi_{52}(25, \cdot)\) 52.4.d.a 2 1
52.4.d.b 2
52.4.e \(\chi_{52}(9, \cdot)\) 52.4.e.a 6 2
52.4.f \(\chi_{52}(31, \cdot)\) 52.4.f.a 2 2
52.4.f.b 36
52.4.h \(\chi_{52}(17, \cdot)\) 52.4.h.a 8 2
52.4.l \(\chi_{52}(7, \cdot)\) 52.4.l.a 4 4
52.4.l.b 72

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(52))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(52)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 2}\)