Defining parameters
Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 52.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(52))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 38 | 5 | 33 |
Cusp forms | 32 | 5 | 27 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(52))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 13 | |||||||
52.6.a.a | $1$ | $8.340$ | \(\Q\) | None | \(0\) | \(-5\) | \(-3\) | \(53\) | $-$ | $-$ | \(q-5q^{3}-3q^{5}+53q^{7}-218q^{9}-702q^{11}+\cdots\) | |
52.6.a.b | $1$ | $8.340$ | \(\Q\) | None | \(0\) | \(17\) | \(-91\) | \(-233\) | $-$ | $-$ | \(q+17q^{3}-91q^{5}-233q^{7}+46q^{9}+\cdots\) | |
52.6.a.c | $3$ | $8.340$ | 3.3.203961.1 | None | \(0\) | \(12\) | \(8\) | \(138\) | $-$ | $+$ | \(q+(5+2\beta _{1}-\beta _{2})q^{3}+(6+5\beta _{1}-5\beta _{2})q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(52))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(52)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)