Properties

Label 52.6.a
Level $52$
Weight $6$
Character orbit 52.a
Rep. character $\chi_{52}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $3$
Sturm bound $42$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 52.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(42\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(52))\).

Total New Old
Modular forms 38 5 33
Cusp forms 32 5 27
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeDim
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(3\)

Trace form

\( 5 q + 24 q^{3} - 86 q^{5} - 42 q^{7} + 869 q^{9} - 858 q^{11} - 169 q^{13} + 3280 q^{15} + 1370 q^{17} - 1758 q^{19} - 5384 q^{21} + 3992 q^{23} + 9903 q^{25} - 9576 q^{27} + 4802 q^{29} - 6782 q^{31} - 2984 q^{33}+ \cdots - 221314 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(52))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13
52.6.a.a 52.a 1.a $1$ $8.340$ \(\Q\) None 52.6.a.a \(0\) \(-5\) \(-3\) \(53\) $-$ $-$ $\mathrm{SU}(2)$ \(q-5q^{3}-3q^{5}+53q^{7}-218q^{9}-702q^{11}+\cdots\)
52.6.a.b 52.a 1.a $1$ $8.340$ \(\Q\) None 52.6.a.b \(0\) \(17\) \(-91\) \(-233\) $-$ $-$ $\mathrm{SU}(2)$ \(q+17q^{3}-91q^{5}-233q^{7}+46q^{9}+\cdots\)
52.6.a.c 52.a 1.a $3$ $8.340$ 3.3.203961.1 None 52.6.a.c \(0\) \(12\) \(8\) \(138\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(5+2\beta _{1}-\beta _{2})q^{3}+(6+5\beta _{1}-5\beta _{2})q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(52))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(52)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 2}\)