Properties

Label 5225.2.a.j.1.4
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.30972\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.54620 q^{2} -1.51334 q^{3} +0.390736 q^{4} -2.33992 q^{6} +4.16140 q^{7} -2.48825 q^{8} -0.709811 q^{9} -1.00000 q^{11} -0.591315 q^{12} -1.82862 q^{13} +6.43436 q^{14} -4.62880 q^{16} -4.80511 q^{17} -1.09751 q^{18} +1.00000 q^{19} -6.29760 q^{21} -1.54620 q^{22} +5.53843 q^{23} +3.76555 q^{24} -2.82741 q^{26} +5.61419 q^{27} +1.62601 q^{28} +3.98933 q^{29} -8.51574 q^{31} -2.18056 q^{32} +1.51334 q^{33} -7.42966 q^{34} -0.277348 q^{36} +7.11059 q^{37} +1.54620 q^{38} +2.76732 q^{39} -3.85750 q^{41} -9.73735 q^{42} +12.0581 q^{43} -0.390736 q^{44} +8.56352 q^{46} -5.75936 q^{47} +7.00493 q^{48} +10.3172 q^{49} +7.27175 q^{51} -0.714506 q^{52} +2.82914 q^{53} +8.68067 q^{54} -10.3546 q^{56} -1.51334 q^{57} +6.16831 q^{58} -10.8553 q^{59} +7.35724 q^{61} -13.1670 q^{62} -2.95381 q^{63} +5.88602 q^{64} +2.33992 q^{66} +11.7680 q^{67} -1.87753 q^{68} -8.38151 q^{69} -4.55334 q^{71} +1.76618 q^{72} +6.03445 q^{73} +10.9944 q^{74} +0.390736 q^{76} -4.16140 q^{77} +4.27882 q^{78} +9.68391 q^{79} -6.36674 q^{81} -5.96447 q^{82} -0.508463 q^{83} -2.46070 q^{84} +18.6442 q^{86} -6.03720 q^{87} +2.48825 q^{88} +6.86161 q^{89} -7.60961 q^{91} +2.16406 q^{92} +12.8872 q^{93} -8.90513 q^{94} +3.29992 q^{96} +3.72641 q^{97} +15.9525 q^{98} +0.709811 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 7 q^{3} + 5 q^{4} + 2 q^{6} + 11 q^{7} - 3 q^{8} + 8 q^{9} - 5 q^{11} + 7 q^{12} - q^{13} - 3 q^{16} + 3 q^{17} + 7 q^{18} + 5 q^{19} + 11 q^{21} - 3 q^{22} + 8 q^{23} + 9 q^{24} - 16 q^{26}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.54620 1.09333 0.546664 0.837352i \(-0.315897\pi\)
0.546664 + 0.837352i \(0.315897\pi\)
\(3\) −1.51334 −0.873726 −0.436863 0.899528i \(-0.643910\pi\)
−0.436863 + 0.899528i \(0.643910\pi\)
\(4\) 0.390736 0.195368
\(5\) 0 0
\(6\) −2.33992 −0.955269
\(7\) 4.16140 1.57286 0.786430 0.617679i \(-0.211927\pi\)
0.786430 + 0.617679i \(0.211927\pi\)
\(8\) −2.48825 −0.879728
\(9\) −0.709811 −0.236604
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) −0.591315 −0.170698
\(13\) −1.82862 −0.507167 −0.253584 0.967313i \(-0.581609\pi\)
−0.253584 + 0.967313i \(0.581609\pi\)
\(14\) 6.43436 1.71965
\(15\) 0 0
\(16\) −4.62880 −1.15720
\(17\) −4.80511 −1.16541 −0.582705 0.812684i \(-0.698006\pi\)
−0.582705 + 0.812684i \(0.698006\pi\)
\(18\) −1.09751 −0.258686
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −6.29760 −1.37425
\(22\) −1.54620 −0.329651
\(23\) 5.53843 1.15484 0.577421 0.816446i \(-0.304059\pi\)
0.577421 + 0.816446i \(0.304059\pi\)
\(24\) 3.76555 0.768640
\(25\) 0 0
\(26\) −2.82741 −0.554501
\(27\) 5.61419 1.08045
\(28\) 1.62601 0.307286
\(29\) 3.98933 0.740800 0.370400 0.928872i \(-0.379221\pi\)
0.370400 + 0.928872i \(0.379221\pi\)
\(30\) 0 0
\(31\) −8.51574 −1.52947 −0.764736 0.644343i \(-0.777131\pi\)
−0.764736 + 0.644343i \(0.777131\pi\)
\(32\) −2.18056 −0.385472
\(33\) 1.51334 0.263438
\(34\) −7.42966 −1.27418
\(35\) 0 0
\(36\) −0.277348 −0.0462247
\(37\) 7.11059 1.16897 0.584487 0.811403i \(-0.301296\pi\)
0.584487 + 0.811403i \(0.301296\pi\)
\(38\) 1.54620 0.250827
\(39\) 2.76732 0.443125
\(40\) 0 0
\(41\) −3.85750 −0.602441 −0.301220 0.953555i \(-0.597394\pi\)
−0.301220 + 0.953555i \(0.597394\pi\)
\(42\) −9.73735 −1.50251
\(43\) 12.0581 1.83884 0.919420 0.393277i \(-0.128659\pi\)
0.919420 + 0.393277i \(0.128659\pi\)
\(44\) −0.390736 −0.0589056
\(45\) 0 0
\(46\) 8.56352 1.26262
\(47\) −5.75936 −0.840090 −0.420045 0.907503i \(-0.637986\pi\)
−0.420045 + 0.907503i \(0.637986\pi\)
\(48\) 7.00493 1.01107
\(49\) 10.3172 1.47389
\(50\) 0 0
\(51\) 7.27175 1.01825
\(52\) −0.714506 −0.0990842
\(53\) 2.82914 0.388612 0.194306 0.980941i \(-0.437754\pi\)
0.194306 + 0.980941i \(0.437754\pi\)
\(54\) 8.68067 1.18129
\(55\) 0 0
\(56\) −10.3546 −1.38369
\(57\) −1.51334 −0.200446
\(58\) 6.16831 0.809938
\(59\) −10.8553 −1.41324 −0.706619 0.707594i \(-0.749781\pi\)
−0.706619 + 0.707594i \(0.749781\pi\)
\(60\) 0 0
\(61\) 7.35724 0.941998 0.470999 0.882134i \(-0.343893\pi\)
0.470999 + 0.882134i \(0.343893\pi\)
\(62\) −13.1670 −1.67222
\(63\) −2.95381 −0.372145
\(64\) 5.88602 0.735752
\(65\) 0 0
\(66\) 2.33992 0.288025
\(67\) 11.7680 1.43769 0.718845 0.695170i \(-0.244671\pi\)
0.718845 + 0.695170i \(0.244671\pi\)
\(68\) −1.87753 −0.227684
\(69\) −8.38151 −1.00902
\(70\) 0 0
\(71\) −4.55334 −0.540382 −0.270191 0.962807i \(-0.587087\pi\)
−0.270191 + 0.962807i \(0.587087\pi\)
\(72\) 1.76618 0.208147
\(73\) 6.03445 0.706278 0.353139 0.935571i \(-0.385114\pi\)
0.353139 + 0.935571i \(0.385114\pi\)
\(74\) 10.9944 1.27807
\(75\) 0 0
\(76\) 0.390736 0.0448204
\(77\) −4.16140 −0.474235
\(78\) 4.27882 0.484481
\(79\) 9.68391 1.08953 0.544763 0.838590i \(-0.316620\pi\)
0.544763 + 0.838590i \(0.316620\pi\)
\(80\) 0 0
\(81\) −6.36674 −0.707415
\(82\) −5.96447 −0.658666
\(83\) −0.508463 −0.0558110 −0.0279055 0.999611i \(-0.508884\pi\)
−0.0279055 + 0.999611i \(0.508884\pi\)
\(84\) −2.46070 −0.268484
\(85\) 0 0
\(86\) 18.6442 2.01046
\(87\) −6.03720 −0.647256
\(88\) 2.48825 0.265248
\(89\) 6.86161 0.727329 0.363665 0.931530i \(-0.381525\pi\)
0.363665 + 0.931530i \(0.381525\pi\)
\(90\) 0 0
\(91\) −7.60961 −0.797704
\(92\) 2.16406 0.225619
\(93\) 12.8872 1.33634
\(94\) −8.90513 −0.918494
\(95\) 0 0
\(96\) 3.29992 0.336796
\(97\) 3.72641 0.378360 0.189180 0.981942i \(-0.439417\pi\)
0.189180 + 0.981942i \(0.439417\pi\)
\(98\) 15.9525 1.61145
\(99\) 0.709811 0.0713387
\(100\) 0 0
\(101\) −14.0934 −1.40234 −0.701171 0.712994i \(-0.747339\pi\)
−0.701171 + 0.712994i \(0.747339\pi\)
\(102\) 11.2436 1.11328
\(103\) −10.8474 −1.06883 −0.534414 0.845223i \(-0.679468\pi\)
−0.534414 + 0.845223i \(0.679468\pi\)
\(104\) 4.55005 0.446169
\(105\) 0 0
\(106\) 4.37442 0.424881
\(107\) 9.49711 0.918120 0.459060 0.888405i \(-0.348186\pi\)
0.459060 + 0.888405i \(0.348186\pi\)
\(108\) 2.19367 0.211086
\(109\) 10.2467 0.981456 0.490728 0.871313i \(-0.336731\pi\)
0.490728 + 0.871313i \(0.336731\pi\)
\(110\) 0 0
\(111\) −10.7607 −1.02136
\(112\) −19.2623 −1.82011
\(113\) 7.19036 0.676412 0.338206 0.941072i \(-0.390180\pi\)
0.338206 + 0.941072i \(0.390180\pi\)
\(114\) −2.33992 −0.219154
\(115\) 0 0
\(116\) 1.55877 0.144728
\(117\) 1.29797 0.119998
\(118\) −16.7845 −1.54513
\(119\) −19.9960 −1.83303
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 11.3758 1.02991
\(123\) 5.83770 0.526368
\(124\) −3.32740 −0.298810
\(125\) 0 0
\(126\) −4.56718 −0.406876
\(127\) 3.35345 0.297570 0.148785 0.988870i \(-0.452464\pi\)
0.148785 + 0.988870i \(0.452464\pi\)
\(128\) 13.4621 1.18989
\(129\) −18.2479 −1.60664
\(130\) 0 0
\(131\) −5.15388 −0.450297 −0.225148 0.974324i \(-0.572287\pi\)
−0.225148 + 0.974324i \(0.572287\pi\)
\(132\) 0.591315 0.0514673
\(133\) 4.16140 0.360839
\(134\) 18.1957 1.57187
\(135\) 0 0
\(136\) 11.9563 1.02524
\(137\) 11.3104 0.966316 0.483158 0.875533i \(-0.339490\pi\)
0.483158 + 0.875533i \(0.339490\pi\)
\(138\) −12.9595 −1.10319
\(139\) 5.14614 0.436490 0.218245 0.975894i \(-0.429967\pi\)
0.218245 + 0.975894i \(0.429967\pi\)
\(140\) 0 0
\(141\) 8.71586 0.734008
\(142\) −7.04038 −0.590816
\(143\) 1.82862 0.152917
\(144\) 3.28557 0.273798
\(145\) 0 0
\(146\) 9.33046 0.772195
\(147\) −15.6135 −1.28778
\(148\) 2.77836 0.228380
\(149\) 10.3400 0.847089 0.423545 0.905875i \(-0.360786\pi\)
0.423545 + 0.905875i \(0.360786\pi\)
\(150\) 0 0
\(151\) −4.86952 −0.396276 −0.198138 0.980174i \(-0.563489\pi\)
−0.198138 + 0.980174i \(0.563489\pi\)
\(152\) −2.48825 −0.201823
\(153\) 3.41072 0.275740
\(154\) −6.43436 −0.518495
\(155\) 0 0
\(156\) 1.08129 0.0865724
\(157\) 17.3831 1.38732 0.693661 0.720302i \(-0.255997\pi\)
0.693661 + 0.720302i \(0.255997\pi\)
\(158\) 14.9733 1.19121
\(159\) −4.28144 −0.339541
\(160\) 0 0
\(161\) 23.0476 1.81641
\(162\) −9.84425 −0.773437
\(163\) −17.0128 −1.33255 −0.666274 0.745707i \(-0.732112\pi\)
−0.666274 + 0.745707i \(0.732112\pi\)
\(164\) −1.50726 −0.117698
\(165\) 0 0
\(166\) −0.786185 −0.0610198
\(167\) 10.3330 0.799590 0.399795 0.916604i \(-0.369081\pi\)
0.399795 + 0.916604i \(0.369081\pi\)
\(168\) 15.6700 1.20896
\(169\) −9.65616 −0.742781
\(170\) 0 0
\(171\) −0.709811 −0.0542806
\(172\) 4.71152 0.359250
\(173\) −15.1982 −1.15550 −0.577748 0.816215i \(-0.696068\pi\)
−0.577748 + 0.816215i \(0.696068\pi\)
\(174\) −9.33473 −0.707664
\(175\) 0 0
\(176\) 4.62880 0.348909
\(177\) 16.4277 1.23478
\(178\) 10.6094 0.795210
\(179\) −10.2858 −0.768794 −0.384397 0.923168i \(-0.625591\pi\)
−0.384397 + 0.923168i \(0.625591\pi\)
\(180\) 0 0
\(181\) 23.0997 1.71699 0.858495 0.512823i \(-0.171400\pi\)
0.858495 + 0.512823i \(0.171400\pi\)
\(182\) −11.7660 −0.872152
\(183\) −11.1340 −0.823048
\(184\) −13.7810 −1.01595
\(185\) 0 0
\(186\) 19.9262 1.46106
\(187\) 4.80511 0.351384
\(188\) −2.25039 −0.164126
\(189\) 23.3629 1.69940
\(190\) 0 0
\(191\) 13.6788 0.989766 0.494883 0.868960i \(-0.335211\pi\)
0.494883 + 0.868960i \(0.335211\pi\)
\(192\) −8.90753 −0.642845
\(193\) −9.48835 −0.682987 −0.341493 0.939884i \(-0.610933\pi\)
−0.341493 + 0.939884i \(0.610933\pi\)
\(194\) 5.76178 0.413672
\(195\) 0 0
\(196\) 4.03131 0.287951
\(197\) 17.2237 1.22713 0.613567 0.789643i \(-0.289734\pi\)
0.613567 + 0.789643i \(0.289734\pi\)
\(198\) 1.09751 0.0779966
\(199\) 14.4608 1.02510 0.512549 0.858658i \(-0.328701\pi\)
0.512549 + 0.858658i \(0.328701\pi\)
\(200\) 0 0
\(201\) −17.8090 −1.25615
\(202\) −21.7911 −1.53322
\(203\) 16.6012 1.16518
\(204\) 2.84133 0.198933
\(205\) 0 0
\(206\) −16.7723 −1.16858
\(207\) −3.93124 −0.273240
\(208\) 8.46430 0.586894
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 1.14231 0.0786401 0.0393200 0.999227i \(-0.487481\pi\)
0.0393200 + 0.999227i \(0.487481\pi\)
\(212\) 1.10545 0.0759223
\(213\) 6.89074 0.472146
\(214\) 14.6844 1.00381
\(215\) 0 0
\(216\) −13.9695 −0.950504
\(217\) −35.4374 −2.40565
\(218\) 15.8434 1.07305
\(219\) −9.13215 −0.617094
\(220\) 0 0
\(221\) 8.78671 0.591058
\(222\) −16.6382 −1.11668
\(223\) −6.86812 −0.459923 −0.229962 0.973200i \(-0.573860\pi\)
−0.229962 + 0.973200i \(0.573860\pi\)
\(224\) −9.07417 −0.606293
\(225\) 0 0
\(226\) 11.1177 0.739541
\(227\) 0.104970 0.00696713 0.00348356 0.999994i \(-0.498891\pi\)
0.00348356 + 0.999994i \(0.498891\pi\)
\(228\) −0.591315 −0.0391608
\(229\) 14.9679 0.989106 0.494553 0.869147i \(-0.335332\pi\)
0.494553 + 0.869147i \(0.335332\pi\)
\(230\) 0 0
\(231\) 6.29760 0.414352
\(232\) −9.92644 −0.651702
\(233\) 16.8004 1.10063 0.550316 0.834956i \(-0.314507\pi\)
0.550316 + 0.834956i \(0.314507\pi\)
\(234\) 2.00693 0.131197
\(235\) 0 0
\(236\) −4.24155 −0.276101
\(237\) −14.6550 −0.951946
\(238\) −30.9178 −2.00410
\(239\) −3.44343 −0.222737 −0.111369 0.993779i \(-0.535523\pi\)
−0.111369 + 0.993779i \(0.535523\pi\)
\(240\) 0 0
\(241\) −14.8135 −0.954222 −0.477111 0.878843i \(-0.658316\pi\)
−0.477111 + 0.878843i \(0.658316\pi\)
\(242\) 1.54620 0.0993935
\(243\) −7.20757 −0.462366
\(244\) 2.87474 0.184036
\(245\) 0 0
\(246\) 9.02626 0.575493
\(247\) −1.82862 −0.116352
\(248\) 21.1893 1.34552
\(249\) 0.769475 0.0487635
\(250\) 0 0
\(251\) 8.76253 0.553086 0.276543 0.961002i \(-0.410811\pi\)
0.276543 + 0.961002i \(0.410811\pi\)
\(252\) −1.15416 −0.0727050
\(253\) −5.53843 −0.348198
\(254\) 5.18510 0.325342
\(255\) 0 0
\(256\) 9.04303 0.565189
\(257\) −2.52960 −0.157792 −0.0788960 0.996883i \(-0.525140\pi\)
−0.0788960 + 0.996883i \(0.525140\pi\)
\(258\) −28.2150 −1.75659
\(259\) 29.5900 1.83863
\(260\) 0 0
\(261\) −2.83167 −0.175276
\(262\) −7.96893 −0.492322
\(263\) 15.3262 0.945053 0.472527 0.881316i \(-0.343342\pi\)
0.472527 + 0.881316i \(0.343342\pi\)
\(264\) −3.76555 −0.231754
\(265\) 0 0
\(266\) 6.43436 0.394516
\(267\) −10.3839 −0.635486
\(268\) 4.59818 0.280878
\(269\) 19.1624 1.16835 0.584176 0.811627i \(-0.301418\pi\)
0.584176 + 0.811627i \(0.301418\pi\)
\(270\) 0 0
\(271\) 30.2567 1.83796 0.918982 0.394299i \(-0.129012\pi\)
0.918982 + 0.394299i \(0.129012\pi\)
\(272\) 22.2419 1.34861
\(273\) 11.5159 0.696974
\(274\) 17.4882 1.05650
\(275\) 0 0
\(276\) −3.27495 −0.197129
\(277\) −4.07877 −0.245069 −0.122535 0.992464i \(-0.539102\pi\)
−0.122535 + 0.992464i \(0.539102\pi\)
\(278\) 7.95697 0.477227
\(279\) 6.04457 0.361879
\(280\) 0 0
\(281\) 3.04066 0.181390 0.0906952 0.995879i \(-0.471091\pi\)
0.0906952 + 0.995879i \(0.471091\pi\)
\(282\) 13.4765 0.802512
\(283\) −2.24468 −0.133432 −0.0667162 0.997772i \(-0.521252\pi\)
−0.0667162 + 0.997772i \(0.521252\pi\)
\(284\) −1.77915 −0.105573
\(285\) 0 0
\(286\) 2.82741 0.167188
\(287\) −16.0526 −0.947556
\(288\) 1.54778 0.0912040
\(289\) 6.08907 0.358181
\(290\) 0 0
\(291\) −5.63932 −0.330583
\(292\) 2.35787 0.137984
\(293\) −18.3882 −1.07425 −0.537124 0.843503i \(-0.680489\pi\)
−0.537124 + 0.843503i \(0.680489\pi\)
\(294\) −24.1415 −1.40796
\(295\) 0 0
\(296\) −17.6929 −1.02838
\(297\) −5.61419 −0.325769
\(298\) 15.9878 0.926147
\(299\) −10.1277 −0.585698
\(300\) 0 0
\(301\) 50.1785 2.89224
\(302\) −7.52925 −0.433260
\(303\) 21.3280 1.22526
\(304\) −4.62880 −0.265480
\(305\) 0 0
\(306\) 5.27365 0.301475
\(307\) −13.5196 −0.771607 −0.385804 0.922581i \(-0.626076\pi\)
−0.385804 + 0.922581i \(0.626076\pi\)
\(308\) −1.62601 −0.0926503
\(309\) 16.4158 0.933862
\(310\) 0 0
\(311\) 27.3678 1.55188 0.775941 0.630805i \(-0.217275\pi\)
0.775941 + 0.630805i \(0.217275\pi\)
\(312\) −6.88576 −0.389829
\(313\) 21.1505 1.19550 0.597748 0.801684i \(-0.296063\pi\)
0.597748 + 0.801684i \(0.296063\pi\)
\(314\) 26.8777 1.51680
\(315\) 0 0
\(316\) 3.78385 0.212858
\(317\) 4.68075 0.262897 0.131448 0.991323i \(-0.458037\pi\)
0.131448 + 0.991323i \(0.458037\pi\)
\(318\) −6.61997 −0.371230
\(319\) −3.98933 −0.223360
\(320\) 0 0
\(321\) −14.3723 −0.802185
\(322\) 35.6362 1.98593
\(323\) −4.80511 −0.267363
\(324\) −2.48771 −0.138206
\(325\) 0 0
\(326\) −26.3053 −1.45691
\(327\) −15.5067 −0.857523
\(328\) 9.59842 0.529984
\(329\) −23.9670 −1.32134
\(330\) 0 0
\(331\) 24.3025 1.33578 0.667892 0.744258i \(-0.267197\pi\)
0.667892 + 0.744258i \(0.267197\pi\)
\(332\) −0.198674 −0.0109037
\(333\) −5.04717 −0.276583
\(334\) 15.9769 0.874215
\(335\) 0 0
\(336\) 29.1503 1.59028
\(337\) −11.6901 −0.636803 −0.318401 0.947956i \(-0.603146\pi\)
−0.318401 + 0.947956i \(0.603146\pi\)
\(338\) −14.9304 −0.812104
\(339\) −10.8814 −0.590999
\(340\) 0 0
\(341\) 8.51574 0.461153
\(342\) −1.09751 −0.0593465
\(343\) 13.8043 0.745365
\(344\) −30.0035 −1.61768
\(345\) 0 0
\(346\) −23.4994 −1.26334
\(347\) −9.85130 −0.528845 −0.264423 0.964407i \(-0.585181\pi\)
−0.264423 + 0.964407i \(0.585181\pi\)
\(348\) −2.35895 −0.126453
\(349\) −3.99813 −0.214015 −0.107007 0.994258i \(-0.534127\pi\)
−0.107007 + 0.994258i \(0.534127\pi\)
\(350\) 0 0
\(351\) −10.2662 −0.547970
\(352\) 2.18056 0.116224
\(353\) −7.73116 −0.411488 −0.205744 0.978606i \(-0.565961\pi\)
−0.205744 + 0.978606i \(0.565961\pi\)
\(354\) 25.4005 1.35002
\(355\) 0 0
\(356\) 2.68107 0.142097
\(357\) 30.2606 1.60156
\(358\) −15.9038 −0.840545
\(359\) 4.83542 0.255204 0.127602 0.991825i \(-0.459272\pi\)
0.127602 + 0.991825i \(0.459272\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 35.7168 1.87723
\(363\) −1.51334 −0.0794296
\(364\) −2.97334 −0.155846
\(365\) 0 0
\(366\) −17.2154 −0.899862
\(367\) 29.8171 1.55644 0.778220 0.627992i \(-0.216123\pi\)
0.778220 + 0.627992i \(0.216123\pi\)
\(368\) −25.6363 −1.33638
\(369\) 2.73810 0.142540
\(370\) 0 0
\(371\) 11.7732 0.611233
\(372\) 5.03548 0.261078
\(373\) 28.2081 1.46056 0.730280 0.683148i \(-0.239390\pi\)
0.730280 + 0.683148i \(0.239390\pi\)
\(374\) 7.42966 0.384179
\(375\) 0 0
\(376\) 14.3307 0.739050
\(377\) −7.29496 −0.375710
\(378\) 36.1237 1.85800
\(379\) −33.7427 −1.73325 −0.866624 0.498962i \(-0.833715\pi\)
−0.866624 + 0.498962i \(0.833715\pi\)
\(380\) 0 0
\(381\) −5.07490 −0.259995
\(382\) 21.1502 1.08214
\(383\) 29.4579 1.50523 0.752615 0.658461i \(-0.228792\pi\)
0.752615 + 0.658461i \(0.228792\pi\)
\(384\) −20.3727 −1.03964
\(385\) 0 0
\(386\) −14.6709 −0.746729
\(387\) −8.55896 −0.435076
\(388\) 1.45604 0.0739193
\(389\) −24.5828 −1.24640 −0.623199 0.782063i \(-0.714167\pi\)
−0.623199 + 0.782063i \(0.714167\pi\)
\(390\) 0 0
\(391\) −26.6128 −1.34586
\(392\) −25.6718 −1.29662
\(393\) 7.79956 0.393436
\(394\) 26.6312 1.34166
\(395\) 0 0
\(396\) 0.277348 0.0139373
\(397\) −22.5952 −1.13402 −0.567009 0.823711i \(-0.691900\pi\)
−0.567009 + 0.823711i \(0.691900\pi\)
\(398\) 22.3593 1.12077
\(399\) −6.29760 −0.315274
\(400\) 0 0
\(401\) −10.9449 −0.546562 −0.273281 0.961934i \(-0.588109\pi\)
−0.273281 + 0.961934i \(0.588109\pi\)
\(402\) −27.5362 −1.37338
\(403\) 15.5720 0.775699
\(404\) −5.50677 −0.273972
\(405\) 0 0
\(406\) 25.6688 1.27392
\(407\) −7.11059 −0.352459
\(408\) −18.0939 −0.895781
\(409\) 30.7338 1.51969 0.759844 0.650106i \(-0.225275\pi\)
0.759844 + 0.650106i \(0.225275\pi\)
\(410\) 0 0
\(411\) −17.1165 −0.844295
\(412\) −4.23847 −0.208814
\(413\) −45.1732 −2.22283
\(414\) −6.07848 −0.298741
\(415\) 0 0
\(416\) 3.98741 0.195499
\(417\) −7.78785 −0.381373
\(418\) −1.54620 −0.0756271
\(419\) −35.3598 −1.72744 −0.863720 0.503972i \(-0.831871\pi\)
−0.863720 + 0.503972i \(0.831871\pi\)
\(420\) 0 0
\(421\) −38.7689 −1.88948 −0.944740 0.327820i \(-0.893686\pi\)
−0.944740 + 0.327820i \(0.893686\pi\)
\(422\) 1.76624 0.0859795
\(423\) 4.08806 0.198768
\(424\) −7.03960 −0.341873
\(425\) 0 0
\(426\) 10.6545 0.516211
\(427\) 30.6164 1.48163
\(428\) 3.71086 0.179371
\(429\) −2.76732 −0.133607
\(430\) 0 0
\(431\) 29.7370 1.43238 0.716191 0.697904i \(-0.245884\pi\)
0.716191 + 0.697904i \(0.245884\pi\)
\(432\) −25.9870 −1.25030
\(433\) 8.54319 0.410559 0.205280 0.978703i \(-0.434190\pi\)
0.205280 + 0.978703i \(0.434190\pi\)
\(434\) −54.7933 −2.63016
\(435\) 0 0
\(436\) 4.00375 0.191745
\(437\) 5.53843 0.264939
\(438\) −14.1201 −0.674686
\(439\) −2.07249 −0.0989146 −0.0494573 0.998776i \(-0.515749\pi\)
−0.0494573 + 0.998776i \(0.515749\pi\)
\(440\) 0 0
\(441\) −7.32329 −0.348728
\(442\) 13.5860 0.646221
\(443\) −23.8457 −1.13295 −0.566473 0.824081i \(-0.691692\pi\)
−0.566473 + 0.824081i \(0.691692\pi\)
\(444\) −4.20459 −0.199541
\(445\) 0 0
\(446\) −10.6195 −0.502848
\(447\) −15.6480 −0.740123
\(448\) 24.4941 1.15724
\(449\) 5.44413 0.256925 0.128462 0.991714i \(-0.458996\pi\)
0.128462 + 0.991714i \(0.458996\pi\)
\(450\) 0 0
\(451\) 3.85750 0.181643
\(452\) 2.80953 0.132149
\(453\) 7.36923 0.346236
\(454\) 0.162305 0.00761736
\(455\) 0 0
\(456\) 3.76555 0.176338
\(457\) 23.4484 1.09687 0.548435 0.836193i \(-0.315224\pi\)
0.548435 + 0.836193i \(0.315224\pi\)
\(458\) 23.1434 1.08142
\(459\) −26.9768 −1.25917
\(460\) 0 0
\(461\) −37.5982 −1.75112 −0.875560 0.483109i \(-0.839508\pi\)
−0.875560 + 0.483109i \(0.839508\pi\)
\(462\) 9.73735 0.453022
\(463\) −27.2719 −1.26743 −0.633716 0.773566i \(-0.718471\pi\)
−0.633716 + 0.773566i \(0.718471\pi\)
\(464\) −18.4658 −0.857253
\(465\) 0 0
\(466\) 25.9768 1.20335
\(467\) −14.2213 −0.658082 −0.329041 0.944316i \(-0.606725\pi\)
−0.329041 + 0.944316i \(0.606725\pi\)
\(468\) 0.507164 0.0234437
\(469\) 48.9713 2.26129
\(470\) 0 0
\(471\) −26.3065 −1.21214
\(472\) 27.0106 1.24327
\(473\) −12.0581 −0.554431
\(474\) −22.6596 −1.04079
\(475\) 0 0
\(476\) −7.81314 −0.358115
\(477\) −2.00816 −0.0919471
\(478\) −5.32424 −0.243525
\(479\) 1.56056 0.0713037 0.0356518 0.999364i \(-0.488649\pi\)
0.0356518 + 0.999364i \(0.488649\pi\)
\(480\) 0 0
\(481\) −13.0025 −0.592865
\(482\) −22.9047 −1.04328
\(483\) −34.8788 −1.58704
\(484\) 0.390736 0.0177607
\(485\) 0 0
\(486\) −11.1443 −0.505518
\(487\) 17.8046 0.806803 0.403402 0.915023i \(-0.367828\pi\)
0.403402 + 0.915023i \(0.367828\pi\)
\(488\) −18.3066 −0.828702
\(489\) 25.7462 1.16428
\(490\) 0 0
\(491\) 4.97956 0.224724 0.112362 0.993667i \(-0.464158\pi\)
0.112362 + 0.993667i \(0.464158\pi\)
\(492\) 2.28100 0.102835
\(493\) −19.1692 −0.863336
\(494\) −2.82741 −0.127211
\(495\) 0 0
\(496\) 39.4176 1.76990
\(497\) −18.9483 −0.849946
\(498\) 1.18976 0.0533146
\(499\) 7.14052 0.319654 0.159827 0.987145i \(-0.448906\pi\)
0.159827 + 0.987145i \(0.448906\pi\)
\(500\) 0 0
\(501\) −15.6373 −0.698623
\(502\) 13.5486 0.604705
\(503\) −39.9024 −1.77916 −0.889579 0.456781i \(-0.849002\pi\)
−0.889579 + 0.456781i \(0.849002\pi\)
\(504\) 7.34979 0.327386
\(505\) 0 0
\(506\) −8.56352 −0.380695
\(507\) 14.6130 0.648987
\(508\) 1.31031 0.0581357
\(509\) 2.18899 0.0970252 0.0485126 0.998823i \(-0.484552\pi\)
0.0485126 + 0.998823i \(0.484552\pi\)
\(510\) 0 0
\(511\) 25.1117 1.11088
\(512\) −12.9418 −0.571953
\(513\) 5.61419 0.247873
\(514\) −3.91127 −0.172519
\(515\) 0 0
\(516\) −7.13012 −0.313886
\(517\) 5.75936 0.253297
\(518\) 45.7520 2.01023
\(519\) 23.0000 1.00959
\(520\) 0 0
\(521\) 21.6375 0.947957 0.473979 0.880536i \(-0.342817\pi\)
0.473979 + 0.880536i \(0.342817\pi\)
\(522\) −4.37833 −0.191634
\(523\) −26.8411 −1.17368 −0.586840 0.809703i \(-0.699628\pi\)
−0.586840 + 0.809703i \(0.699628\pi\)
\(524\) −2.01380 −0.0879735
\(525\) 0 0
\(526\) 23.6974 1.03325
\(527\) 40.9191 1.78246
\(528\) −7.00493 −0.304850
\(529\) 7.67419 0.333661
\(530\) 0 0
\(531\) 7.70520 0.334377
\(532\) 1.62601 0.0704963
\(533\) 7.05390 0.305538
\(534\) −16.0556 −0.694795
\(535\) 0 0
\(536\) −29.2817 −1.26478
\(537\) 15.5658 0.671715
\(538\) 29.6289 1.27739
\(539\) −10.3172 −0.444395
\(540\) 0 0
\(541\) −44.0968 −1.89587 −0.947935 0.318465i \(-0.896833\pi\)
−0.947935 + 0.318465i \(0.896833\pi\)
\(542\) 46.7829 2.00950
\(543\) −34.9577 −1.50018
\(544\) 10.4778 0.449232
\(545\) 0 0
\(546\) 17.8059 0.762022
\(547\) 21.5021 0.919362 0.459681 0.888084i \(-0.347964\pi\)
0.459681 + 0.888084i \(0.347964\pi\)
\(548\) 4.41939 0.188787
\(549\) −5.22225 −0.222880
\(550\) 0 0
\(551\) 3.98933 0.169951
\(552\) 20.8553 0.887658
\(553\) 40.2986 1.71367
\(554\) −6.30659 −0.267941
\(555\) 0 0
\(556\) 2.01078 0.0852761
\(557\) 33.2260 1.40783 0.703915 0.710284i \(-0.251434\pi\)
0.703915 + 0.710284i \(0.251434\pi\)
\(558\) 9.34611 0.395652
\(559\) −22.0496 −0.932600
\(560\) 0 0
\(561\) −7.27175 −0.307013
\(562\) 4.70146 0.198319
\(563\) 7.31538 0.308306 0.154153 0.988047i \(-0.450735\pi\)
0.154153 + 0.988047i \(0.450735\pi\)
\(564\) 3.40560 0.143401
\(565\) 0 0
\(566\) −3.47073 −0.145885
\(567\) −26.4945 −1.11267
\(568\) 11.3298 0.475389
\(569\) 7.20515 0.302056 0.151028 0.988530i \(-0.451742\pi\)
0.151028 + 0.988530i \(0.451742\pi\)
\(570\) 0 0
\(571\) 15.0655 0.630472 0.315236 0.949013i \(-0.397916\pi\)
0.315236 + 0.949013i \(0.397916\pi\)
\(572\) 0.714506 0.0298750
\(573\) −20.7007 −0.864783
\(574\) −24.8206 −1.03599
\(575\) 0 0
\(576\) −4.17796 −0.174082
\(577\) −5.82824 −0.242633 −0.121316 0.992614i \(-0.538712\pi\)
−0.121316 + 0.992614i \(0.538712\pi\)
\(578\) 9.41492 0.391609
\(579\) 14.3591 0.596743
\(580\) 0 0
\(581\) −2.11592 −0.0877830
\(582\) −8.71952 −0.361436
\(583\) −2.82914 −0.117171
\(584\) −15.0152 −0.621333
\(585\) 0 0
\(586\) −28.4318 −1.17451
\(587\) 40.6364 1.67724 0.838622 0.544714i \(-0.183362\pi\)
0.838622 + 0.544714i \(0.183362\pi\)
\(588\) −6.10073 −0.251590
\(589\) −8.51574 −0.350885
\(590\) 0 0
\(591\) −26.0652 −1.07218
\(592\) −32.9135 −1.35273
\(593\) 32.0839 1.31753 0.658764 0.752350i \(-0.271080\pi\)
0.658764 + 0.752350i \(0.271080\pi\)
\(594\) −8.68067 −0.356172
\(595\) 0 0
\(596\) 4.04022 0.165494
\(597\) −21.8840 −0.895654
\(598\) −15.6594 −0.640361
\(599\) −47.1879 −1.92805 −0.964023 0.265820i \(-0.914357\pi\)
−0.964023 + 0.265820i \(0.914357\pi\)
\(600\) 0 0
\(601\) −6.75179 −0.275411 −0.137706 0.990473i \(-0.543973\pi\)
−0.137706 + 0.990473i \(0.543973\pi\)
\(602\) 77.5860 3.16217
\(603\) −8.35305 −0.340163
\(604\) −1.90269 −0.0774195
\(605\) 0 0
\(606\) 32.9774 1.33961
\(607\) −37.4849 −1.52147 −0.760733 0.649065i \(-0.775160\pi\)
−0.760733 + 0.649065i \(0.775160\pi\)
\(608\) −2.18056 −0.0884332
\(609\) −25.1232 −1.01804
\(610\) 0 0
\(611\) 10.5317 0.426066
\(612\) 1.33269 0.0538708
\(613\) −35.4094 −1.43017 −0.715085 0.699037i \(-0.753612\pi\)
−0.715085 + 0.699037i \(0.753612\pi\)
\(614\) −20.9041 −0.843620
\(615\) 0 0
\(616\) 10.3546 0.417198
\(617\) 27.4510 1.10513 0.552567 0.833469i \(-0.313648\pi\)
0.552567 + 0.833469i \(0.313648\pi\)
\(618\) 25.3821 1.02102
\(619\) −7.15830 −0.287716 −0.143858 0.989598i \(-0.545951\pi\)
−0.143858 + 0.989598i \(0.545951\pi\)
\(620\) 0 0
\(621\) 31.0938 1.24775
\(622\) 42.3160 1.69672
\(623\) 28.5539 1.14399
\(624\) −12.8093 −0.512784
\(625\) 0 0
\(626\) 32.7029 1.30707
\(627\) 1.51334 0.0604369
\(628\) 6.79219 0.271038
\(629\) −34.1671 −1.36233
\(630\) 0 0
\(631\) −28.7158 −1.14316 −0.571578 0.820547i \(-0.693669\pi\)
−0.571578 + 0.820547i \(0.693669\pi\)
\(632\) −24.0959 −0.958485
\(633\) −1.72870 −0.0687098
\(634\) 7.23737 0.287433
\(635\) 0 0
\(636\) −1.67291 −0.0663353
\(637\) −18.8663 −0.747509
\(638\) −6.16831 −0.244206
\(639\) 3.23201 0.127856
\(640\) 0 0
\(641\) −42.9018 −1.69452 −0.847259 0.531180i \(-0.821749\pi\)
−0.847259 + 0.531180i \(0.821749\pi\)
\(642\) −22.2225 −0.877052
\(643\) 26.1604 1.03167 0.515834 0.856689i \(-0.327482\pi\)
0.515834 + 0.856689i \(0.327482\pi\)
\(644\) 9.00552 0.354867
\(645\) 0 0
\(646\) −7.42966 −0.292316
\(647\) −32.5031 −1.27783 −0.638915 0.769277i \(-0.720616\pi\)
−0.638915 + 0.769277i \(0.720616\pi\)
\(648\) 15.8420 0.622333
\(649\) 10.8553 0.426107
\(650\) 0 0
\(651\) 53.6287 2.10188
\(652\) −6.64752 −0.260337
\(653\) −18.9389 −0.741137 −0.370569 0.928805i \(-0.620837\pi\)
−0.370569 + 0.928805i \(0.620837\pi\)
\(654\) −23.9765 −0.937554
\(655\) 0 0
\(656\) 17.8556 0.697144
\(657\) −4.28331 −0.167108
\(658\) −37.0578 −1.44466
\(659\) 43.5740 1.69740 0.848701 0.528873i \(-0.177385\pi\)
0.848701 + 0.528873i \(0.177385\pi\)
\(660\) 0 0
\(661\) −34.9291 −1.35858 −0.679292 0.733868i \(-0.737713\pi\)
−0.679292 + 0.733868i \(0.737713\pi\)
\(662\) 37.5765 1.46045
\(663\) −13.2973 −0.516422
\(664\) 1.26518 0.0490985
\(665\) 0 0
\(666\) −7.80394 −0.302396
\(667\) 22.0946 0.855507
\(668\) 4.03746 0.156214
\(669\) 10.3938 0.401847
\(670\) 0 0
\(671\) −7.35724 −0.284023
\(672\) 13.7323 0.529734
\(673\) −39.0030 −1.50346 −0.751728 0.659473i \(-0.770780\pi\)
−0.751728 + 0.659473i \(0.770780\pi\)
\(674\) −18.0753 −0.696235
\(675\) 0 0
\(676\) −3.77300 −0.145116
\(677\) −27.3864 −1.05255 −0.526273 0.850316i \(-0.676411\pi\)
−0.526273 + 0.850316i \(0.676411\pi\)
\(678\) −16.8249 −0.646156
\(679\) 15.5071 0.595107
\(680\) 0 0
\(681\) −0.158856 −0.00608736
\(682\) 13.1670 0.504192
\(683\) −44.9382 −1.71951 −0.859755 0.510706i \(-0.829384\pi\)
−0.859755 + 0.510706i \(0.829384\pi\)
\(684\) −0.277348 −0.0106047
\(685\) 0 0
\(686\) 21.3443 0.814929
\(687\) −22.6515 −0.864207
\(688\) −55.8144 −2.12790
\(689\) −5.17342 −0.197092
\(690\) 0 0
\(691\) 25.4509 0.968199 0.484100 0.875013i \(-0.339147\pi\)
0.484100 + 0.875013i \(0.339147\pi\)
\(692\) −5.93847 −0.225747
\(693\) 2.95381 0.112206
\(694\) −15.2321 −0.578202
\(695\) 0 0
\(696\) 15.0220 0.569409
\(697\) 18.5357 0.702091
\(698\) −6.18191 −0.233989
\(699\) −25.4247 −0.961651
\(700\) 0 0
\(701\) 50.6146 1.91169 0.955844 0.293873i \(-0.0949444\pi\)
0.955844 + 0.293873i \(0.0949444\pi\)
\(702\) −15.8736 −0.599111
\(703\) 7.11059 0.268181
\(704\) −5.88602 −0.221838
\(705\) 0 0
\(706\) −11.9539 −0.449892
\(707\) −58.6481 −2.20569
\(708\) 6.41889 0.241237
\(709\) 25.8266 0.969938 0.484969 0.874531i \(-0.338831\pi\)
0.484969 + 0.874531i \(0.338831\pi\)
\(710\) 0 0
\(711\) −6.87374 −0.257786
\(712\) −17.0734 −0.639852
\(713\) −47.1638 −1.76630
\(714\) 46.7890 1.75104
\(715\) 0 0
\(716\) −4.01901 −0.150198
\(717\) 5.21107 0.194611
\(718\) 7.47653 0.279021
\(719\) −26.1220 −0.974187 −0.487093 0.873350i \(-0.661943\pi\)
−0.487093 + 0.873350i \(0.661943\pi\)
\(720\) 0 0
\(721\) −45.1404 −1.68112
\(722\) 1.54620 0.0575436
\(723\) 22.4178 0.833728
\(724\) 9.02588 0.335444
\(725\) 0 0
\(726\) −2.33992 −0.0868427
\(727\) 32.1853 1.19369 0.596844 0.802357i \(-0.296421\pi\)
0.596844 + 0.802357i \(0.296421\pi\)
\(728\) 18.9346 0.701762
\(729\) 30.0077 1.11140
\(730\) 0 0
\(731\) −57.9404 −2.14300
\(732\) −4.35044 −0.160797
\(733\) 24.9746 0.922457 0.461229 0.887281i \(-0.347409\pi\)
0.461229 + 0.887281i \(0.347409\pi\)
\(734\) 46.1032 1.70170
\(735\) 0 0
\(736\) −12.0769 −0.445159
\(737\) −11.7680 −0.433480
\(738\) 4.23365 0.155843
\(739\) −21.0642 −0.774859 −0.387429 0.921899i \(-0.626637\pi\)
−0.387429 + 0.921899i \(0.626637\pi\)
\(740\) 0 0
\(741\) 2.76732 0.101660
\(742\) 18.2037 0.668279
\(743\) 19.3902 0.711357 0.355679 0.934608i \(-0.384250\pi\)
0.355679 + 0.934608i \(0.384250\pi\)
\(744\) −32.0665 −1.17561
\(745\) 0 0
\(746\) 43.6154 1.59687
\(747\) 0.360912 0.0132051
\(748\) 1.87753 0.0686492
\(749\) 39.5213 1.44408
\(750\) 0 0
\(751\) −32.5618 −1.18820 −0.594098 0.804393i \(-0.702491\pi\)
−0.594098 + 0.804393i \(0.702491\pi\)
\(752\) 26.6589 0.972151
\(753\) −13.2607 −0.483245
\(754\) −11.2795 −0.410774
\(755\) 0 0
\(756\) 9.12871 0.332008
\(757\) −40.4497 −1.47017 −0.735084 0.677976i \(-0.762857\pi\)
−0.735084 + 0.677976i \(0.762857\pi\)
\(758\) −52.1730 −1.89501
\(759\) 8.38151 0.304230
\(760\) 0 0
\(761\) 20.6529 0.748666 0.374333 0.927294i \(-0.377872\pi\)
0.374333 + 0.927294i \(0.377872\pi\)
\(762\) −7.84681 −0.284260
\(763\) 42.6406 1.54369
\(764\) 5.34481 0.193368
\(765\) 0 0
\(766\) 45.5479 1.64571
\(767\) 19.8502 0.716749
\(768\) −13.6852 −0.493820
\(769\) −2.53650 −0.0914686 −0.0457343 0.998954i \(-0.514563\pi\)
−0.0457343 + 0.998954i \(0.514563\pi\)
\(770\) 0 0
\(771\) 3.82813 0.137867
\(772\) −3.70744 −0.133434
\(773\) −27.4490 −0.987273 −0.493637 0.869668i \(-0.664333\pi\)
−0.493637 + 0.869668i \(0.664333\pi\)
\(774\) −13.2339 −0.475681
\(775\) 0 0
\(776\) −9.27223 −0.332854
\(777\) −44.7796 −1.60646
\(778\) −38.0100 −1.36272
\(779\) −3.85750 −0.138209
\(780\) 0 0
\(781\) 4.55334 0.162931
\(782\) −41.1486 −1.47147
\(783\) 22.3969 0.800399
\(784\) −47.7564 −1.70559
\(785\) 0 0
\(786\) 12.0597 0.430155
\(787\) −39.4380 −1.40581 −0.702907 0.711281i \(-0.748115\pi\)
−0.702907 + 0.711281i \(0.748115\pi\)
\(788\) 6.72989 0.239742
\(789\) −23.1937 −0.825717
\(790\) 0 0
\(791\) 29.9220 1.06390
\(792\) −1.76618 −0.0627586
\(793\) −13.4536 −0.477751
\(794\) −34.9367 −1.23986
\(795\) 0 0
\(796\) 5.65034 0.200271
\(797\) −38.1840 −1.35255 −0.676273 0.736651i \(-0.736406\pi\)
−0.676273 + 0.736651i \(0.736406\pi\)
\(798\) −9.73735 −0.344698
\(799\) 27.6744 0.979049
\(800\) 0 0
\(801\) −4.87044 −0.172089
\(802\) −16.9230 −0.597572
\(803\) −6.03445 −0.212951
\(804\) −6.95859 −0.245411
\(805\) 0 0
\(806\) 24.0775 0.848094
\(807\) −28.9992 −1.02082
\(808\) 35.0677 1.23368
\(809\) −15.2742 −0.537011 −0.268506 0.963278i \(-0.586530\pi\)
−0.268506 + 0.963278i \(0.586530\pi\)
\(810\) 0 0
\(811\) 9.16787 0.321928 0.160964 0.986960i \(-0.448540\pi\)
0.160964 + 0.986960i \(0.448540\pi\)
\(812\) 6.48668 0.227638
\(813\) −45.7886 −1.60588
\(814\) −10.9944 −0.385353
\(815\) 0 0
\(816\) −33.6594 −1.17832
\(817\) 12.0581 0.421859
\(818\) 47.5206 1.66152
\(819\) 5.40138 0.188740
\(820\) 0 0
\(821\) −8.97266 −0.313148 −0.156574 0.987666i \(-0.550045\pi\)
−0.156574 + 0.987666i \(0.550045\pi\)
\(822\) −26.4656 −0.923092
\(823\) 11.8425 0.412805 0.206402 0.978467i \(-0.433824\pi\)
0.206402 + 0.978467i \(0.433824\pi\)
\(824\) 26.9910 0.940277
\(825\) 0 0
\(826\) −69.8468 −2.43028
\(827\) 35.1524 1.22237 0.611184 0.791488i \(-0.290693\pi\)
0.611184 + 0.791488i \(0.290693\pi\)
\(828\) −1.53607 −0.0533823
\(829\) −37.8166 −1.31343 −0.656713 0.754141i \(-0.728054\pi\)
−0.656713 + 0.754141i \(0.728054\pi\)
\(830\) 0 0
\(831\) 6.17255 0.214123
\(832\) −10.7633 −0.373149
\(833\) −49.5754 −1.71769
\(834\) −12.0416 −0.416966
\(835\) 0 0
\(836\) −0.390736 −0.0135139
\(837\) −47.8090 −1.65252
\(838\) −54.6733 −1.88866
\(839\) 25.0571 0.865067 0.432533 0.901618i \(-0.357620\pi\)
0.432533 + 0.901618i \(0.357620\pi\)
\(840\) 0 0
\(841\) −13.0852 −0.451215
\(842\) −59.9445 −2.06582
\(843\) −4.60154 −0.158485
\(844\) 0.446342 0.0153637
\(845\) 0 0
\(846\) 6.32096 0.217319
\(847\) 4.16140 0.142987
\(848\) −13.0955 −0.449702
\(849\) 3.39696 0.116583
\(850\) 0 0
\(851\) 39.3815 1.34998
\(852\) 2.69246 0.0922421
\(853\) −23.8418 −0.816329 −0.408164 0.912908i \(-0.633831\pi\)
−0.408164 + 0.912908i \(0.633831\pi\)
\(854\) 47.3391 1.61991
\(855\) 0 0
\(856\) −23.6311 −0.807696
\(857\) 34.6121 1.18233 0.591164 0.806551i \(-0.298669\pi\)
0.591164 + 0.806551i \(0.298669\pi\)
\(858\) −4.27882 −0.146077
\(859\) 32.6520 1.11407 0.557035 0.830489i \(-0.311939\pi\)
0.557035 + 0.830489i \(0.311939\pi\)
\(860\) 0 0
\(861\) 24.2930 0.827904
\(862\) 45.9794 1.56606
\(863\) 10.1698 0.346182 0.173091 0.984906i \(-0.444624\pi\)
0.173091 + 0.984906i \(0.444624\pi\)
\(864\) −12.2421 −0.416484
\(865\) 0 0
\(866\) 13.2095 0.448876
\(867\) −9.21481 −0.312951
\(868\) −13.8467 −0.469986
\(869\) −9.68391 −0.328504
\(870\) 0 0
\(871\) −21.5192 −0.729150
\(872\) −25.4963 −0.863414
\(873\) −2.64505 −0.0895213
\(874\) 8.56352 0.289665
\(875\) 0 0
\(876\) −3.56826 −0.120560
\(877\) −8.91797 −0.301138 −0.150569 0.988599i \(-0.548111\pi\)
−0.150569 + 0.988599i \(0.548111\pi\)
\(878\) −3.20449 −0.108146
\(879\) 27.8275 0.938598
\(880\) 0 0
\(881\) −9.08968 −0.306239 −0.153120 0.988208i \(-0.548932\pi\)
−0.153120 + 0.988208i \(0.548932\pi\)
\(882\) −11.3233 −0.381274
\(883\) 45.0015 1.51442 0.757210 0.653171i \(-0.226562\pi\)
0.757210 + 0.653171i \(0.226562\pi\)
\(884\) 3.43328 0.115474
\(885\) 0 0
\(886\) −36.8703 −1.23868
\(887\) 21.4687 0.720850 0.360425 0.932788i \(-0.382632\pi\)
0.360425 + 0.932788i \(0.382632\pi\)
\(888\) 26.7753 0.898520
\(889\) 13.9550 0.468037
\(890\) 0 0
\(891\) 6.36674 0.213294
\(892\) −2.68362 −0.0898542
\(893\) −5.75936 −0.192730
\(894\) −24.1949 −0.809198
\(895\) 0 0
\(896\) 56.0211 1.87153
\(897\) 15.3266 0.511740
\(898\) 8.41772 0.280903
\(899\) −33.9721 −1.13303
\(900\) 0 0
\(901\) −13.5943 −0.452893
\(902\) 5.96447 0.198595
\(903\) −75.9370 −2.52702
\(904\) −17.8914 −0.595059
\(905\) 0 0
\(906\) 11.3943 0.378550
\(907\) −12.5080 −0.415322 −0.207661 0.978201i \(-0.566585\pi\)
−0.207661 + 0.978201i \(0.566585\pi\)
\(908\) 0.0410156 0.00136115
\(909\) 10.0036 0.331799
\(910\) 0 0
\(911\) −4.62780 −0.153326 −0.0766629 0.997057i \(-0.524427\pi\)
−0.0766629 + 0.997057i \(0.524427\pi\)
\(912\) 7.00493 0.231956
\(913\) 0.508463 0.0168277
\(914\) 36.2559 1.19924
\(915\) 0 0
\(916\) 5.84849 0.193239
\(917\) −21.4474 −0.708254
\(918\) −41.7116 −1.37669
\(919\) −11.1376 −0.367395 −0.183698 0.982983i \(-0.558807\pi\)
−0.183698 + 0.982983i \(0.558807\pi\)
\(920\) 0 0
\(921\) 20.4598 0.674173
\(922\) −58.1343 −1.91455
\(923\) 8.32632 0.274064
\(924\) 2.46070 0.0809509
\(925\) 0 0
\(926\) −42.1678 −1.38572
\(927\) 7.69961 0.252888
\(928\) −8.69896 −0.285557
\(929\) −27.3911 −0.898672 −0.449336 0.893363i \(-0.648339\pi\)
−0.449336 + 0.893363i \(0.648339\pi\)
\(930\) 0 0
\(931\) 10.3172 0.338134
\(932\) 6.56452 0.215028
\(933\) −41.4166 −1.35592
\(934\) −21.9889 −0.719500
\(935\) 0 0
\(936\) −3.22968 −0.105565
\(937\) −41.4439 −1.35391 −0.676957 0.736022i \(-0.736702\pi\)
−0.676957 + 0.736022i \(0.736702\pi\)
\(938\) 75.7195 2.47233
\(939\) −32.0078 −1.04453
\(940\) 0 0
\(941\) −43.5568 −1.41991 −0.709956 0.704246i \(-0.751285\pi\)
−0.709956 + 0.704246i \(0.751285\pi\)
\(942\) −40.6751 −1.32527
\(943\) −21.3645 −0.695724
\(944\) 50.2469 1.63540
\(945\) 0 0
\(946\) −18.6442 −0.606176
\(947\) 33.0491 1.07395 0.536976 0.843598i \(-0.319567\pi\)
0.536976 + 0.843598i \(0.319567\pi\)
\(948\) −5.72624 −0.185980
\(949\) −11.0347 −0.358201
\(950\) 0 0
\(951\) −7.08355 −0.229700
\(952\) 49.7549 1.61257
\(953\) −0.505736 −0.0163824 −0.00819120 0.999966i \(-0.502607\pi\)
−0.00819120 + 0.999966i \(0.502607\pi\)
\(954\) −3.10501 −0.100528
\(955\) 0 0
\(956\) −1.34547 −0.0435157
\(957\) 6.03720 0.195155
\(958\) 2.41293 0.0779584
\(959\) 47.0672 1.51988
\(960\) 0 0
\(961\) 41.5179 1.33929
\(962\) −20.1045 −0.648196
\(963\) −6.74115 −0.217231
\(964\) −5.78817 −0.186424
\(965\) 0 0
\(966\) −53.9296 −1.73516
\(967\) 46.1493 1.48406 0.742031 0.670366i \(-0.233863\pi\)
0.742031 + 0.670366i \(0.233863\pi\)
\(968\) −2.48825 −0.0799752
\(969\) 7.27175 0.233602
\(970\) 0 0
\(971\) −27.0101 −0.866795 −0.433398 0.901203i \(-0.642685\pi\)
−0.433398 + 0.901203i \(0.642685\pi\)
\(972\) −2.81625 −0.0903313
\(973\) 21.4152 0.686538
\(974\) 27.5295 0.882101
\(975\) 0 0
\(976\) −34.0552 −1.09008
\(977\) 30.5323 0.976814 0.488407 0.872616i \(-0.337578\pi\)
0.488407 + 0.872616i \(0.337578\pi\)
\(978\) 39.8087 1.27294
\(979\) −6.86161 −0.219298
\(980\) 0 0
\(981\) −7.27322 −0.232216
\(982\) 7.69940 0.245698
\(983\) −27.5882 −0.879926 −0.439963 0.898016i \(-0.645008\pi\)
−0.439963 + 0.898016i \(0.645008\pi\)
\(984\) −14.5256 −0.463060
\(985\) 0 0
\(986\) −29.6394 −0.943910
\(987\) 36.2702 1.15449
\(988\) −0.714506 −0.0227315
\(989\) 66.7828 2.12357
\(990\) 0 0
\(991\) −57.2710 −1.81927 −0.909636 0.415405i \(-0.863640\pi\)
−0.909636 + 0.415405i \(0.863640\pi\)
\(992\) 18.5691 0.589568
\(993\) −36.7778 −1.16711
\(994\) −29.2978 −0.929271
\(995\) 0 0
\(996\) 0.300661 0.00952682
\(997\) 50.4928 1.59912 0.799561 0.600584i \(-0.205065\pi\)
0.799561 + 0.600584i \(0.205065\pi\)
\(998\) 11.0407 0.349486
\(999\) 39.9202 1.26302
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.j.1.4 5
5.4 even 2 1045.2.a.d.1.2 5
15.14 odd 2 9405.2.a.v.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.d.1.2 5 5.4 even 2
5225.2.a.j.1.4 5 1.1 even 1 trivial
9405.2.a.v.1.4 5 15.14 odd 2