Properties

Label 5225.2.a.l.1.3
Level $5225$
Weight $2$
Character 5225.1
Self dual yes
Analytic conductor $41.722$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5225,2,Mod(1,5225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5225 = 5^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.7218350561\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.77015\) of defining polynomial
Character \(\chi\) \(=\) 5225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.205229 q^{2} +3.10246 q^{3} -1.95788 q^{4} -0.636714 q^{6} -2.33231 q^{7} +0.812271 q^{8} +6.62527 q^{9} -1.00000 q^{11} -6.07425 q^{12} +4.30769 q^{13} +0.478657 q^{14} +3.74906 q^{16} -6.71096 q^{17} -1.35969 q^{18} -1.00000 q^{19} -7.23590 q^{21} +0.205229 q^{22} -8.24907 q^{23} +2.52004 q^{24} -0.884062 q^{26} +11.2472 q^{27} +4.56638 q^{28} +3.02355 q^{29} -10.2077 q^{31} -2.39396 q^{32} -3.10246 q^{33} +1.37728 q^{34} -12.9715 q^{36} +5.06393 q^{37} +0.205229 q^{38} +13.3644 q^{39} -6.47966 q^{41} +1.48501 q^{42} -1.64130 q^{43} +1.95788 q^{44} +1.69295 q^{46} +8.15593 q^{47} +11.6313 q^{48} -1.56033 q^{49} -20.8205 q^{51} -8.43395 q^{52} +2.35693 q^{53} -2.30826 q^{54} -1.89447 q^{56} -3.10246 q^{57} -0.620519 q^{58} -4.65880 q^{59} +8.93722 q^{61} +2.09491 q^{62} -15.4522 q^{63} -7.00681 q^{64} +0.636714 q^{66} -13.2994 q^{67} +13.1393 q^{68} -25.5924 q^{69} -8.76859 q^{71} +5.38151 q^{72} +2.66639 q^{73} -1.03926 q^{74} +1.95788 q^{76} +2.33231 q^{77} -2.74277 q^{78} -12.1246 q^{79} +15.0183 q^{81} +1.32981 q^{82} +17.8672 q^{83} +14.1670 q^{84} +0.336843 q^{86} +9.38045 q^{87} -0.812271 q^{88} -1.27875 q^{89} -10.0469 q^{91} +16.1507 q^{92} -31.6690 q^{93} -1.67383 q^{94} -7.42716 q^{96} -14.9748 q^{97} +0.320225 q^{98} -6.62527 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + q^{3} + 4 q^{4} - 5 q^{7} + 12 q^{8} + q^{9} - 6 q^{11} - q^{12} + 5 q^{13} - 8 q^{14} + 4 q^{16} - q^{17} - 6 q^{18} - 6 q^{19} - 21 q^{21} - 2 q^{22} - 4 q^{23} - q^{24} - 14 q^{26}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.205229 −0.145119 −0.0725593 0.997364i \(-0.523117\pi\)
−0.0725593 + 0.997364i \(0.523117\pi\)
\(3\) 3.10246 1.79121 0.895603 0.444853i \(-0.146744\pi\)
0.895603 + 0.444853i \(0.146744\pi\)
\(4\) −1.95788 −0.978941
\(5\) 0 0
\(6\) −0.636714 −0.259937
\(7\) −2.33231 −0.881530 −0.440765 0.897623i \(-0.645293\pi\)
−0.440765 + 0.897623i \(0.645293\pi\)
\(8\) 0.812271 0.287181
\(9\) 6.62527 2.20842
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) −6.07425 −1.75349
\(13\) 4.30769 1.19474 0.597369 0.801966i \(-0.296213\pi\)
0.597369 + 0.801966i \(0.296213\pi\)
\(14\) 0.478657 0.127926
\(15\) 0 0
\(16\) 3.74906 0.937265
\(17\) −6.71096 −1.62765 −0.813824 0.581111i \(-0.802618\pi\)
−0.813824 + 0.581111i \(0.802618\pi\)
\(18\) −1.35969 −0.320483
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −7.23590 −1.57900
\(22\) 0.205229 0.0437549
\(23\) −8.24907 −1.72005 −0.860025 0.510252i \(-0.829552\pi\)
−0.860025 + 0.510252i \(0.829552\pi\)
\(24\) 2.52004 0.514401
\(25\) 0 0
\(26\) −0.884062 −0.173379
\(27\) 11.2472 2.16453
\(28\) 4.56638 0.862966
\(29\) 3.02355 0.561459 0.280730 0.959787i \(-0.409424\pi\)
0.280730 + 0.959787i \(0.409424\pi\)
\(30\) 0 0
\(31\) −10.2077 −1.83335 −0.916677 0.399628i \(-0.869139\pi\)
−0.916677 + 0.399628i \(0.869139\pi\)
\(32\) −2.39396 −0.423196
\(33\) −3.10246 −0.540069
\(34\) 1.37728 0.236202
\(35\) 0 0
\(36\) −12.9715 −2.16191
\(37\) 5.06393 0.832506 0.416253 0.909249i \(-0.363343\pi\)
0.416253 + 0.909249i \(0.363343\pi\)
\(38\) 0.205229 0.0332925
\(39\) 13.3644 2.14002
\(40\) 0 0
\(41\) −6.47966 −1.01195 −0.505976 0.862548i \(-0.668868\pi\)
−0.505976 + 0.862548i \(0.668868\pi\)
\(42\) 1.48501 0.229143
\(43\) −1.64130 −0.250296 −0.125148 0.992138i \(-0.539941\pi\)
−0.125148 + 0.992138i \(0.539941\pi\)
\(44\) 1.95788 0.295162
\(45\) 0 0
\(46\) 1.69295 0.249611
\(47\) 8.15593 1.18966 0.594832 0.803850i \(-0.297219\pi\)
0.594832 + 0.803850i \(0.297219\pi\)
\(48\) 11.6313 1.67884
\(49\) −1.56033 −0.222905
\(50\) 0 0
\(51\) −20.8205 −2.91545
\(52\) −8.43395 −1.16958
\(53\) 2.35693 0.323749 0.161875 0.986811i \(-0.448246\pi\)
0.161875 + 0.986811i \(0.448246\pi\)
\(54\) −2.30826 −0.314114
\(55\) 0 0
\(56\) −1.89447 −0.253159
\(57\) −3.10246 −0.410931
\(58\) −0.620519 −0.0814782
\(59\) −4.65880 −0.606525 −0.303262 0.952907i \(-0.598076\pi\)
−0.303262 + 0.952907i \(0.598076\pi\)
\(60\) 0 0
\(61\) 8.93722 1.14429 0.572147 0.820151i \(-0.306111\pi\)
0.572147 + 0.820151i \(0.306111\pi\)
\(62\) 2.09491 0.266054
\(63\) −15.4522 −1.94679
\(64\) −7.00681 −0.875852
\(65\) 0 0
\(66\) 0.636714 0.0783741
\(67\) −13.2994 −1.62478 −0.812392 0.583111i \(-0.801835\pi\)
−0.812392 + 0.583111i \(0.801835\pi\)
\(68\) 13.1393 1.59337
\(69\) −25.5924 −3.08097
\(70\) 0 0
\(71\) −8.76859 −1.04064 −0.520320 0.853971i \(-0.674187\pi\)
−0.520320 + 0.853971i \(0.674187\pi\)
\(72\) 5.38151 0.634217
\(73\) 2.66639 0.312077 0.156038 0.987751i \(-0.450128\pi\)
0.156038 + 0.987751i \(0.450128\pi\)
\(74\) −1.03926 −0.120812
\(75\) 0 0
\(76\) 1.95788 0.224584
\(77\) 2.33231 0.265791
\(78\) −2.74277 −0.310557
\(79\) −12.1246 −1.36413 −0.682065 0.731292i \(-0.738918\pi\)
−0.682065 + 0.731292i \(0.738918\pi\)
\(80\) 0 0
\(81\) 15.0183 1.66871
\(82\) 1.32981 0.146853
\(83\) 17.8672 1.96117 0.980587 0.196082i \(-0.0628220\pi\)
0.980587 + 0.196082i \(0.0628220\pi\)
\(84\) 14.1670 1.54575
\(85\) 0 0
\(86\) 0.336843 0.0363227
\(87\) 9.38045 1.00569
\(88\) −0.812271 −0.0865884
\(89\) −1.27875 −0.135548 −0.0677739 0.997701i \(-0.521590\pi\)
−0.0677739 + 0.997701i \(0.521590\pi\)
\(90\) 0 0
\(91\) −10.0469 −1.05320
\(92\) 16.1507 1.68383
\(93\) −31.6690 −3.28392
\(94\) −1.67383 −0.172642
\(95\) 0 0
\(96\) −7.42716 −0.758031
\(97\) −14.9748 −1.52046 −0.760230 0.649654i \(-0.774914\pi\)
−0.760230 + 0.649654i \(0.774914\pi\)
\(98\) 0.320225 0.0323476
\(99\) −6.62527 −0.665864
\(100\) 0 0
\(101\) 0.465796 0.0463484 0.0231742 0.999731i \(-0.492623\pi\)
0.0231742 + 0.999731i \(0.492623\pi\)
\(102\) 4.27297 0.423087
\(103\) −12.7767 −1.25892 −0.629462 0.777031i \(-0.716725\pi\)
−0.629462 + 0.777031i \(0.716725\pi\)
\(104\) 3.49901 0.343106
\(105\) 0 0
\(106\) −0.483709 −0.0469820
\(107\) −3.81929 −0.369225 −0.184612 0.982811i \(-0.559103\pi\)
−0.184612 + 0.982811i \(0.559103\pi\)
\(108\) −22.0208 −2.11895
\(109\) 9.14480 0.875913 0.437956 0.898996i \(-0.355702\pi\)
0.437956 + 0.898996i \(0.355702\pi\)
\(110\) 0 0
\(111\) 15.7107 1.49119
\(112\) −8.74397 −0.826228
\(113\) −1.55378 −0.146167 −0.0730837 0.997326i \(-0.523284\pi\)
−0.0730837 + 0.997326i \(0.523284\pi\)
\(114\) 0.636714 0.0596337
\(115\) 0 0
\(116\) −5.91975 −0.549635
\(117\) 28.5396 2.63849
\(118\) 0.956120 0.0880180
\(119\) 15.6520 1.43482
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −1.83417 −0.166058
\(123\) −20.1029 −1.81262
\(124\) 19.9854 1.79475
\(125\) 0 0
\(126\) 3.17123 0.282515
\(127\) 6.95455 0.617117 0.308558 0.951205i \(-0.400154\pi\)
0.308558 + 0.951205i \(0.400154\pi\)
\(128\) 6.22591 0.550298
\(129\) −5.09208 −0.448333
\(130\) 0 0
\(131\) −12.3544 −1.07941 −0.539703 0.841855i \(-0.681463\pi\)
−0.539703 + 0.841855i \(0.681463\pi\)
\(132\) 6.07425 0.528696
\(133\) 2.33231 0.202237
\(134\) 2.72943 0.235787
\(135\) 0 0
\(136\) −5.45112 −0.467430
\(137\) 5.14851 0.439867 0.219934 0.975515i \(-0.429416\pi\)
0.219934 + 0.975515i \(0.429416\pi\)
\(138\) 5.25230 0.447105
\(139\) −6.46045 −0.547968 −0.273984 0.961734i \(-0.588342\pi\)
−0.273984 + 0.961734i \(0.588342\pi\)
\(140\) 0 0
\(141\) 25.3034 2.13093
\(142\) 1.79957 0.151016
\(143\) −4.30769 −0.360227
\(144\) 24.8385 2.06988
\(145\) 0 0
\(146\) −0.547219 −0.0452882
\(147\) −4.84087 −0.399269
\(148\) −9.91458 −0.814974
\(149\) 1.25732 0.103004 0.0515019 0.998673i \(-0.483599\pi\)
0.0515019 + 0.998673i \(0.483599\pi\)
\(150\) 0 0
\(151\) −3.48878 −0.283913 −0.141956 0.989873i \(-0.545339\pi\)
−0.141956 + 0.989873i \(0.545339\pi\)
\(152\) −0.812271 −0.0658839
\(153\) −44.4619 −3.59453
\(154\) −0.478657 −0.0385713
\(155\) 0 0
\(156\) −26.1660 −2.09496
\(157\) −6.34241 −0.506180 −0.253090 0.967443i \(-0.581447\pi\)
−0.253090 + 0.967443i \(0.581447\pi\)
\(158\) 2.48832 0.197960
\(159\) 7.31228 0.579902
\(160\) 0 0
\(161\) 19.2394 1.51628
\(162\) −3.08220 −0.242160
\(163\) 23.4566 1.83726 0.918630 0.395119i \(-0.129296\pi\)
0.918630 + 0.395119i \(0.129296\pi\)
\(164\) 12.6864 0.990641
\(165\) 0 0
\(166\) −3.66685 −0.284603
\(167\) −6.70854 −0.519122 −0.259561 0.965727i \(-0.583578\pi\)
−0.259561 + 0.965727i \(0.583578\pi\)
\(168\) −5.87751 −0.453460
\(169\) 5.55619 0.427399
\(170\) 0 0
\(171\) −6.62527 −0.506647
\(172\) 3.21348 0.245025
\(173\) 8.18749 0.622483 0.311242 0.950331i \(-0.399255\pi\)
0.311242 + 0.950331i \(0.399255\pi\)
\(174\) −1.92514 −0.145944
\(175\) 0 0
\(176\) −3.74906 −0.282596
\(177\) −14.4538 −1.08641
\(178\) 0.262437 0.0196705
\(179\) −13.0297 −0.973885 −0.486943 0.873434i \(-0.661888\pi\)
−0.486943 + 0.873434i \(0.661888\pi\)
\(180\) 0 0
\(181\) −13.6260 −1.01281 −0.506407 0.862294i \(-0.669027\pi\)
−0.506407 + 0.862294i \(0.669027\pi\)
\(182\) 2.06190 0.152839
\(183\) 27.7274 2.04967
\(184\) −6.70048 −0.493966
\(185\) 0 0
\(186\) 6.49938 0.476558
\(187\) 6.71096 0.490754
\(188\) −15.9683 −1.16461
\(189\) −26.2321 −1.90810
\(190\) 0 0
\(191\) 2.87940 0.208346 0.104173 0.994559i \(-0.466780\pi\)
0.104173 + 0.994559i \(0.466780\pi\)
\(192\) −21.7384 −1.56883
\(193\) −23.3069 −1.67767 −0.838834 0.544387i \(-0.816762\pi\)
−0.838834 + 0.544387i \(0.816762\pi\)
\(194\) 3.07326 0.220647
\(195\) 0 0
\(196\) 3.05495 0.218211
\(197\) 21.4910 1.53117 0.765585 0.643335i \(-0.222450\pi\)
0.765585 + 0.643335i \(0.222450\pi\)
\(198\) 1.35969 0.0966293
\(199\) −11.8592 −0.840678 −0.420339 0.907367i \(-0.638089\pi\)
−0.420339 + 0.907367i \(0.638089\pi\)
\(200\) 0 0
\(201\) −41.2610 −2.91033
\(202\) −0.0955946 −0.00672601
\(203\) −7.05185 −0.494943
\(204\) 40.7641 2.85406
\(205\) 0 0
\(206\) 2.62214 0.182693
\(207\) −54.6523 −3.79860
\(208\) 16.1498 1.11979
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) −12.2769 −0.845175 −0.422587 0.906322i \(-0.638878\pi\)
−0.422587 + 0.906322i \(0.638878\pi\)
\(212\) −4.61459 −0.316931
\(213\) −27.2042 −1.86400
\(214\) 0.783828 0.0535814
\(215\) 0 0
\(216\) 9.13581 0.621613
\(217\) 23.8075 1.61616
\(218\) −1.87678 −0.127111
\(219\) 8.27236 0.558994
\(220\) 0 0
\(221\) −28.9088 −1.94461
\(222\) −3.22428 −0.216399
\(223\) −18.1532 −1.21563 −0.607813 0.794080i \(-0.707953\pi\)
−0.607813 + 0.794080i \(0.707953\pi\)
\(224\) 5.58345 0.373060
\(225\) 0 0
\(226\) 0.318880 0.0212116
\(227\) 18.9555 1.25812 0.629061 0.777356i \(-0.283440\pi\)
0.629061 + 0.777356i \(0.283440\pi\)
\(228\) 6.07425 0.402277
\(229\) −16.3134 −1.07802 −0.539009 0.842300i \(-0.681201\pi\)
−0.539009 + 0.842300i \(0.681201\pi\)
\(230\) 0 0
\(231\) 7.23590 0.476087
\(232\) 2.45594 0.161240
\(233\) 22.9853 1.50582 0.752910 0.658124i \(-0.228650\pi\)
0.752910 + 0.658124i \(0.228650\pi\)
\(234\) −5.85714 −0.382893
\(235\) 0 0
\(236\) 9.12138 0.593751
\(237\) −37.6162 −2.44344
\(238\) −3.21225 −0.208219
\(239\) −17.2793 −1.11771 −0.558853 0.829267i \(-0.688759\pi\)
−0.558853 + 0.829267i \(0.688759\pi\)
\(240\) 0 0
\(241\) 13.4260 0.864843 0.432422 0.901672i \(-0.357659\pi\)
0.432422 + 0.901672i \(0.357659\pi\)
\(242\) −0.205229 −0.0131926
\(243\) 12.8521 0.824463
\(244\) −17.4980 −1.12020
\(245\) 0 0
\(246\) 4.12569 0.263044
\(247\) −4.30769 −0.274092
\(248\) −8.29141 −0.526505
\(249\) 55.4321 3.51287
\(250\) 0 0
\(251\) 1.20422 0.0760099 0.0380050 0.999278i \(-0.487900\pi\)
0.0380050 + 0.999278i \(0.487900\pi\)
\(252\) 30.2535 1.90579
\(253\) 8.24907 0.518615
\(254\) −1.42727 −0.0895551
\(255\) 0 0
\(256\) 12.7359 0.795993
\(257\) 17.1513 1.06987 0.534935 0.844893i \(-0.320336\pi\)
0.534935 + 0.844893i \(0.320336\pi\)
\(258\) 1.04504 0.0650614
\(259\) −11.8107 −0.733879
\(260\) 0 0
\(261\) 20.0318 1.23994
\(262\) 2.53547 0.156642
\(263\) −6.60962 −0.407567 −0.203783 0.979016i \(-0.565324\pi\)
−0.203783 + 0.979016i \(0.565324\pi\)
\(264\) −2.52004 −0.155098
\(265\) 0 0
\(266\) −0.478657 −0.0293483
\(267\) −3.96729 −0.242794
\(268\) 26.0387 1.59057
\(269\) −2.85724 −0.174209 −0.0871046 0.996199i \(-0.527761\pi\)
−0.0871046 + 0.996199i \(0.527761\pi\)
\(270\) 0 0
\(271\) −1.28250 −0.0779062 −0.0389531 0.999241i \(-0.512402\pi\)
−0.0389531 + 0.999241i \(0.512402\pi\)
\(272\) −25.1598 −1.52554
\(273\) −31.1700 −1.88649
\(274\) −1.05662 −0.0638329
\(275\) 0 0
\(276\) 50.1069 3.01608
\(277\) −16.2492 −0.976322 −0.488161 0.872753i \(-0.662332\pi\)
−0.488161 + 0.872753i \(0.662332\pi\)
\(278\) 1.32587 0.0795204
\(279\) −67.6286 −4.04882
\(280\) 0 0
\(281\) −29.4723 −1.75817 −0.879085 0.476664i \(-0.841846\pi\)
−0.879085 + 0.476664i \(0.841846\pi\)
\(282\) −5.19299 −0.309238
\(283\) 32.9008 1.95575 0.977874 0.209196i \(-0.0670845\pi\)
0.977874 + 0.209196i \(0.0670845\pi\)
\(284\) 17.1679 1.01872
\(285\) 0 0
\(286\) 0.884062 0.0522757
\(287\) 15.1126 0.892066
\(288\) −15.8606 −0.934595
\(289\) 28.0370 1.64924
\(290\) 0 0
\(291\) −46.4587 −2.72346
\(292\) −5.22047 −0.305505
\(293\) −27.9704 −1.63405 −0.817023 0.576605i \(-0.804377\pi\)
−0.817023 + 0.576605i \(0.804377\pi\)
\(294\) 0.993486 0.0579413
\(295\) 0 0
\(296\) 4.11329 0.239080
\(297\) −11.2472 −0.652631
\(298\) −0.258038 −0.0149478
\(299\) −35.5344 −2.05501
\(300\) 0 0
\(301\) 3.82803 0.220644
\(302\) 0.715997 0.0412010
\(303\) 1.44511 0.0830196
\(304\) −3.74906 −0.215023
\(305\) 0 0
\(306\) 9.12486 0.521634
\(307\) 0.783038 0.0446903 0.0223452 0.999750i \(-0.492887\pi\)
0.0223452 + 0.999750i \(0.492887\pi\)
\(308\) −4.56638 −0.260194
\(309\) −39.6392 −2.25499
\(310\) 0 0
\(311\) −10.0442 −0.569555 −0.284777 0.958594i \(-0.591920\pi\)
−0.284777 + 0.958594i \(0.591920\pi\)
\(312\) 10.8555 0.614574
\(313\) 1.80765 0.102174 0.0510872 0.998694i \(-0.483731\pi\)
0.0510872 + 0.998694i \(0.483731\pi\)
\(314\) 1.30165 0.0734561
\(315\) 0 0
\(316\) 23.7386 1.33540
\(317\) −14.2824 −0.802182 −0.401091 0.916038i \(-0.631369\pi\)
−0.401091 + 0.916038i \(0.631369\pi\)
\(318\) −1.50069 −0.0841545
\(319\) −3.02355 −0.169286
\(320\) 0 0
\(321\) −11.8492 −0.661358
\(322\) −3.94847 −0.220040
\(323\) 6.71096 0.373408
\(324\) −29.4041 −1.63356
\(325\) 0 0
\(326\) −4.81396 −0.266621
\(327\) 28.3714 1.56894
\(328\) −5.26323 −0.290614
\(329\) −19.0221 −1.04872
\(330\) 0 0
\(331\) −14.4996 −0.796969 −0.398484 0.917175i \(-0.630464\pi\)
−0.398484 + 0.917175i \(0.630464\pi\)
\(332\) −34.9818 −1.91987
\(333\) 33.5499 1.83852
\(334\) 1.37678 0.0753343
\(335\) 0 0
\(336\) −27.1278 −1.47994
\(337\) −17.0292 −0.927638 −0.463819 0.885930i \(-0.653521\pi\)
−0.463819 + 0.885930i \(0.653521\pi\)
\(338\) −1.14029 −0.0620236
\(339\) −4.82055 −0.261816
\(340\) 0 0
\(341\) 10.2077 0.552777
\(342\) 1.35969 0.0735239
\(343\) 19.9653 1.07803
\(344\) −1.33318 −0.0718804
\(345\) 0 0
\(346\) −1.68031 −0.0903339
\(347\) 12.4889 0.670439 0.335220 0.942140i \(-0.391189\pi\)
0.335220 + 0.942140i \(0.391189\pi\)
\(348\) −18.3658 −0.984510
\(349\) −20.9482 −1.12133 −0.560667 0.828042i \(-0.689455\pi\)
−0.560667 + 0.828042i \(0.689455\pi\)
\(350\) 0 0
\(351\) 48.4496 2.58605
\(352\) 2.39396 0.127598
\(353\) 11.3626 0.604769 0.302384 0.953186i \(-0.402217\pi\)
0.302384 + 0.953186i \(0.402217\pi\)
\(354\) 2.96633 0.157658
\(355\) 0 0
\(356\) 2.50365 0.132693
\(357\) 48.5599 2.57006
\(358\) 2.67407 0.141329
\(359\) −3.59897 −0.189946 −0.0949732 0.995480i \(-0.530277\pi\)
−0.0949732 + 0.995480i \(0.530277\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 2.79645 0.146978
\(363\) 3.10246 0.162837
\(364\) 19.6706 1.03102
\(365\) 0 0
\(366\) −5.69045 −0.297445
\(367\) −22.8321 −1.19183 −0.595914 0.803048i \(-0.703210\pi\)
−0.595914 + 0.803048i \(0.703210\pi\)
\(368\) −30.9263 −1.61214
\(369\) −42.9294 −2.23482
\(370\) 0 0
\(371\) −5.49709 −0.285395
\(372\) 62.0041 3.21476
\(373\) 14.5973 0.755822 0.377911 0.925842i \(-0.376643\pi\)
0.377911 + 0.925842i \(0.376643\pi\)
\(374\) −1.37728 −0.0712176
\(375\) 0 0
\(376\) 6.62482 0.341649
\(377\) 13.0245 0.670797
\(378\) 5.38357 0.276901
\(379\) 11.8706 0.609752 0.304876 0.952392i \(-0.401385\pi\)
0.304876 + 0.952392i \(0.401385\pi\)
\(380\) 0 0
\(381\) 21.5762 1.10538
\(382\) −0.590936 −0.0302349
\(383\) −12.6086 −0.644268 −0.322134 0.946694i \(-0.604400\pi\)
−0.322134 + 0.946694i \(0.604400\pi\)
\(384\) 19.3157 0.985698
\(385\) 0 0
\(386\) 4.78325 0.243461
\(387\) −10.8741 −0.552760
\(388\) 29.3189 1.48844
\(389\) 35.3815 1.79391 0.896956 0.442120i \(-0.145773\pi\)
0.896956 + 0.442120i \(0.145773\pi\)
\(390\) 0 0
\(391\) 55.3592 2.79964
\(392\) −1.26741 −0.0640140
\(393\) −38.3289 −1.93344
\(394\) −4.41057 −0.222201
\(395\) 0 0
\(396\) 12.9715 0.651842
\(397\) 3.65851 0.183615 0.0918076 0.995777i \(-0.470736\pi\)
0.0918076 + 0.995777i \(0.470736\pi\)
\(398\) 2.43385 0.121998
\(399\) 7.23590 0.362248
\(400\) 0 0
\(401\) 7.80707 0.389867 0.194933 0.980816i \(-0.437551\pi\)
0.194933 + 0.980816i \(0.437551\pi\)
\(402\) 8.46794 0.422342
\(403\) −43.9716 −2.19038
\(404\) −0.911972 −0.0453723
\(405\) 0 0
\(406\) 1.44724 0.0718255
\(407\) −5.06393 −0.251010
\(408\) −16.9119 −0.837263
\(409\) 18.6176 0.920582 0.460291 0.887768i \(-0.347745\pi\)
0.460291 + 0.887768i \(0.347745\pi\)
\(410\) 0 0
\(411\) 15.9731 0.787893
\(412\) 25.0152 1.23241
\(413\) 10.8658 0.534670
\(414\) 11.2162 0.551247
\(415\) 0 0
\(416\) −10.3124 −0.505608
\(417\) −20.0433 −0.981525
\(418\) −0.205229 −0.0100381
\(419\) 4.36059 0.213029 0.106514 0.994311i \(-0.466031\pi\)
0.106514 + 0.994311i \(0.466031\pi\)
\(420\) 0 0
\(421\) 13.8050 0.672813 0.336407 0.941717i \(-0.390788\pi\)
0.336407 + 0.941717i \(0.390788\pi\)
\(422\) 2.51957 0.122651
\(423\) 54.0352 2.62728
\(424\) 1.91446 0.0929746
\(425\) 0 0
\(426\) 5.58308 0.270501
\(427\) −20.8444 −1.00873
\(428\) 7.47771 0.361449
\(429\) −13.3644 −0.645241
\(430\) 0 0
\(431\) −22.3219 −1.07521 −0.537603 0.843198i \(-0.680670\pi\)
−0.537603 + 0.843198i \(0.680670\pi\)
\(432\) 42.1666 2.02874
\(433\) 32.5287 1.56323 0.781614 0.623762i \(-0.214397\pi\)
0.781614 + 0.623762i \(0.214397\pi\)
\(434\) −4.88598 −0.234535
\(435\) 0 0
\(436\) −17.9044 −0.857467
\(437\) 8.24907 0.394607
\(438\) −1.69773 −0.0811205
\(439\) −11.6856 −0.557723 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(440\) 0 0
\(441\) −10.3376 −0.492268
\(442\) 5.93291 0.282200
\(443\) 24.6321 1.17031 0.585154 0.810923i \(-0.301034\pi\)
0.585154 + 0.810923i \(0.301034\pi\)
\(444\) −30.7596 −1.45979
\(445\) 0 0
\(446\) 3.72555 0.176410
\(447\) 3.90079 0.184501
\(448\) 16.3421 0.772090
\(449\) −0.271967 −0.0128349 −0.00641746 0.999979i \(-0.502043\pi\)
−0.00641746 + 0.999979i \(0.502043\pi\)
\(450\) 0 0
\(451\) 6.47966 0.305115
\(452\) 3.04212 0.143089
\(453\) −10.8238 −0.508546
\(454\) −3.89021 −0.182577
\(455\) 0 0
\(456\) −2.52004 −0.118012
\(457\) 26.6203 1.24524 0.622622 0.782523i \(-0.286067\pi\)
0.622622 + 0.782523i \(0.286067\pi\)
\(458\) 3.34797 0.156440
\(459\) −75.4799 −3.52310
\(460\) 0 0
\(461\) 18.5239 0.862742 0.431371 0.902175i \(-0.358030\pi\)
0.431371 + 0.902175i \(0.358030\pi\)
\(462\) −1.48501 −0.0690891
\(463\) −14.9154 −0.693178 −0.346589 0.938017i \(-0.612660\pi\)
−0.346589 + 0.938017i \(0.612660\pi\)
\(464\) 11.3355 0.526236
\(465\) 0 0
\(466\) −4.71725 −0.218522
\(467\) −24.4100 −1.12956 −0.564780 0.825242i \(-0.691039\pi\)
−0.564780 + 0.825242i \(0.691039\pi\)
\(468\) −55.8771 −2.58292
\(469\) 31.0184 1.43230
\(470\) 0 0
\(471\) −19.6771 −0.906673
\(472\) −3.78421 −0.174182
\(473\) 1.64130 0.0754672
\(474\) 7.71993 0.354588
\(475\) 0 0
\(476\) −30.6448 −1.40460
\(477\) 15.6153 0.714974
\(478\) 3.54621 0.162200
\(479\) 12.0531 0.550722 0.275361 0.961341i \(-0.411203\pi\)
0.275361 + 0.961341i \(0.411203\pi\)
\(480\) 0 0
\(481\) 21.8139 0.994626
\(482\) −2.75540 −0.125505
\(483\) 59.6894 2.71596
\(484\) −1.95788 −0.0889946
\(485\) 0 0
\(486\) −2.63762 −0.119645
\(487\) −27.5058 −1.24641 −0.623204 0.782059i \(-0.714169\pi\)
−0.623204 + 0.782059i \(0.714169\pi\)
\(488\) 7.25944 0.328620
\(489\) 72.7731 3.29091
\(490\) 0 0
\(491\) 33.0788 1.49283 0.746413 0.665483i \(-0.231774\pi\)
0.746413 + 0.665483i \(0.231774\pi\)
\(492\) 39.3590 1.77444
\(493\) −20.2909 −0.913858
\(494\) 0.884062 0.0397758
\(495\) 0 0
\(496\) −38.2692 −1.71834
\(497\) 20.4511 0.917356
\(498\) −11.3763 −0.509783
\(499\) 9.58033 0.428874 0.214437 0.976738i \(-0.431208\pi\)
0.214437 + 0.976738i \(0.431208\pi\)
\(500\) 0 0
\(501\) −20.8130 −0.929856
\(502\) −0.247141 −0.0110305
\(503\) −16.0390 −0.715142 −0.357571 0.933886i \(-0.616395\pi\)
−0.357571 + 0.933886i \(0.616395\pi\)
\(504\) −12.5513 −0.559081
\(505\) 0 0
\(506\) −1.69295 −0.0752606
\(507\) 17.2379 0.765561
\(508\) −13.6162 −0.604121
\(509\) 11.7844 0.522334 0.261167 0.965294i \(-0.415893\pi\)
0.261167 + 0.965294i \(0.415893\pi\)
\(510\) 0 0
\(511\) −6.21884 −0.275105
\(512\) −15.0656 −0.665811
\(513\) −11.2472 −0.496578
\(514\) −3.51994 −0.155258
\(515\) 0 0
\(516\) 9.96969 0.438891
\(517\) −8.15593 −0.358697
\(518\) 2.42389 0.106499
\(519\) 25.4014 1.11500
\(520\) 0 0
\(521\) −7.41167 −0.324711 −0.162356 0.986732i \(-0.551909\pi\)
−0.162356 + 0.986732i \(0.551909\pi\)
\(522\) −4.11111 −0.179938
\(523\) −5.89974 −0.257977 −0.128989 0.991646i \(-0.541173\pi\)
−0.128989 + 0.991646i \(0.541173\pi\)
\(524\) 24.1884 1.05667
\(525\) 0 0
\(526\) 1.35648 0.0591455
\(527\) 68.5034 2.98406
\(528\) −11.6313 −0.506188
\(529\) 45.0472 1.95857
\(530\) 0 0
\(531\) −30.8658 −1.33946
\(532\) −4.56638 −0.197978
\(533\) −27.9123 −1.20902
\(534\) 0.814201 0.0352339
\(535\) 0 0
\(536\) −10.8027 −0.466608
\(537\) −40.4241 −1.74443
\(538\) 0.586388 0.0252810
\(539\) 1.56033 0.0672083
\(540\) 0 0
\(541\) 23.5417 1.01214 0.506068 0.862493i \(-0.331098\pi\)
0.506068 + 0.862493i \(0.331098\pi\)
\(542\) 0.263205 0.0113056
\(543\) −42.2742 −1.81416
\(544\) 16.0658 0.688814
\(545\) 0 0
\(546\) 6.39698 0.273765
\(547\) −1.63464 −0.0698923 −0.0349461 0.999389i \(-0.511126\pi\)
−0.0349461 + 0.999389i \(0.511126\pi\)
\(548\) −10.0802 −0.430604
\(549\) 59.2115 2.52708
\(550\) 0 0
\(551\) −3.02355 −0.128808
\(552\) −20.7880 −0.884795
\(553\) 28.2784 1.20252
\(554\) 3.33481 0.141683
\(555\) 0 0
\(556\) 12.6488 0.536428
\(557\) 9.30739 0.394367 0.197183 0.980367i \(-0.436821\pi\)
0.197183 + 0.980367i \(0.436821\pi\)
\(558\) 13.8793 0.587559
\(559\) −7.07023 −0.299039
\(560\) 0 0
\(561\) 20.8205 0.879043
\(562\) 6.04856 0.255143
\(563\) 1.61027 0.0678646 0.0339323 0.999424i \(-0.489197\pi\)
0.0339323 + 0.999424i \(0.489197\pi\)
\(564\) −49.5411 −2.08606
\(565\) 0 0
\(566\) −6.75218 −0.283815
\(567\) −35.0274 −1.47101
\(568\) −7.12247 −0.298852
\(569\) −17.0331 −0.714064 −0.357032 0.934092i \(-0.616211\pi\)
−0.357032 + 0.934092i \(0.616211\pi\)
\(570\) 0 0
\(571\) −5.32472 −0.222833 −0.111416 0.993774i \(-0.535539\pi\)
−0.111416 + 0.993774i \(0.535539\pi\)
\(572\) 8.43395 0.352641
\(573\) 8.93323 0.373191
\(574\) −3.10153 −0.129455
\(575\) 0 0
\(576\) −46.4220 −1.93425
\(577\) 12.6976 0.528608 0.264304 0.964439i \(-0.414858\pi\)
0.264304 + 0.964439i \(0.414858\pi\)
\(578\) −5.75401 −0.239335
\(579\) −72.3088 −3.00505
\(580\) 0 0
\(581\) −41.6717 −1.72883
\(582\) 9.53467 0.395225
\(583\) −2.35693 −0.0976140
\(584\) 2.16583 0.0896226
\(585\) 0 0
\(586\) 5.74032 0.237131
\(587\) 28.4780 1.17541 0.587707 0.809074i \(-0.300031\pi\)
0.587707 + 0.809074i \(0.300031\pi\)
\(588\) 9.47786 0.390860
\(589\) 10.2077 0.420600
\(590\) 0 0
\(591\) 66.6750 2.74264
\(592\) 18.9850 0.780279
\(593\) 34.7604 1.42744 0.713719 0.700433i \(-0.247010\pi\)
0.713719 + 0.700433i \(0.247010\pi\)
\(594\) 2.30826 0.0947090
\(595\) 0 0
\(596\) −2.46169 −0.100835
\(597\) −36.7928 −1.50583
\(598\) 7.29269 0.298220
\(599\) 28.1663 1.15084 0.575422 0.817857i \(-0.304838\pi\)
0.575422 + 0.817857i \(0.304838\pi\)
\(600\) 0 0
\(601\) 35.3257 1.44097 0.720484 0.693472i \(-0.243920\pi\)
0.720484 + 0.693472i \(0.243920\pi\)
\(602\) −0.785621 −0.0320195
\(603\) −88.1123 −3.58821
\(604\) 6.83061 0.277934
\(605\) 0 0
\(606\) −0.296579 −0.0120477
\(607\) 20.4938 0.831816 0.415908 0.909407i \(-0.363464\pi\)
0.415908 + 0.909407i \(0.363464\pi\)
\(608\) 2.39396 0.0970878
\(609\) −21.8781 −0.886546
\(610\) 0 0
\(611\) 35.1332 1.42134
\(612\) 87.0512 3.51883
\(613\) 2.87465 0.116106 0.0580530 0.998314i \(-0.481511\pi\)
0.0580530 + 0.998314i \(0.481511\pi\)
\(614\) −0.160702 −0.00648540
\(615\) 0 0
\(616\) 1.89447 0.0763302
\(617\) −13.0363 −0.524820 −0.262410 0.964956i \(-0.584517\pi\)
−0.262410 + 0.964956i \(0.584517\pi\)
\(618\) 8.13510 0.327242
\(619\) −36.8449 −1.48092 −0.740461 0.672099i \(-0.765393\pi\)
−0.740461 + 0.672099i \(0.765393\pi\)
\(620\) 0 0
\(621\) −92.7793 −3.72311
\(622\) 2.06136 0.0826530
\(623\) 2.98245 0.119489
\(624\) 50.1041 2.00577
\(625\) 0 0
\(626\) −0.370981 −0.0148274
\(627\) 3.10246 0.123900
\(628\) 12.4177 0.495520
\(629\) −33.9839 −1.35503
\(630\) 0 0
\(631\) −31.5517 −1.25605 −0.628026 0.778192i \(-0.716137\pi\)
−0.628026 + 0.778192i \(0.716137\pi\)
\(632\) −9.84849 −0.391752
\(633\) −38.0885 −1.51388
\(634\) 2.93117 0.116412
\(635\) 0 0
\(636\) −14.3166 −0.567689
\(637\) −6.72143 −0.266313
\(638\) 0.620519 0.0245666
\(639\) −58.0942 −2.29817
\(640\) 0 0
\(641\) −13.4739 −0.532188 −0.266094 0.963947i \(-0.585733\pi\)
−0.266094 + 0.963947i \(0.585733\pi\)
\(642\) 2.43180 0.0959753
\(643\) 25.9686 1.02410 0.512051 0.858955i \(-0.328886\pi\)
0.512051 + 0.858955i \(0.328886\pi\)
\(644\) −37.6684 −1.48434
\(645\) 0 0
\(646\) −1.37728 −0.0541885
\(647\) 48.7918 1.91820 0.959101 0.283063i \(-0.0913505\pi\)
0.959101 + 0.283063i \(0.0913505\pi\)
\(648\) 12.1990 0.479221
\(649\) 4.65880 0.182874
\(650\) 0 0
\(651\) 73.8618 2.89487
\(652\) −45.9252 −1.79857
\(653\) −5.61760 −0.219834 −0.109917 0.993941i \(-0.535058\pi\)
−0.109917 + 0.993941i \(0.535058\pi\)
\(654\) −5.82262 −0.227683
\(655\) 0 0
\(656\) −24.2926 −0.948468
\(657\) 17.6655 0.689197
\(658\) 3.90389 0.152189
\(659\) −8.87841 −0.345854 −0.172927 0.984935i \(-0.555322\pi\)
−0.172927 + 0.984935i \(0.555322\pi\)
\(660\) 0 0
\(661\) −19.6584 −0.764625 −0.382312 0.924033i \(-0.624872\pi\)
−0.382312 + 0.924033i \(0.624872\pi\)
\(662\) 2.97573 0.115655
\(663\) −89.6883 −3.48320
\(664\) 14.5130 0.563212
\(665\) 0 0
\(666\) −6.88540 −0.266804
\(667\) −24.9415 −0.965738
\(668\) 13.1345 0.508190
\(669\) −56.3195 −2.17744
\(670\) 0 0
\(671\) −8.93722 −0.345018
\(672\) 17.3224 0.668227
\(673\) 14.2191 0.548106 0.274053 0.961715i \(-0.411636\pi\)
0.274053 + 0.961715i \(0.411636\pi\)
\(674\) 3.49487 0.134618
\(675\) 0 0
\(676\) −10.8784 −0.418399
\(677\) −51.0566 −1.96226 −0.981132 0.193339i \(-0.938068\pi\)
−0.981132 + 0.193339i \(0.938068\pi\)
\(678\) 0.989314 0.0379944
\(679\) 34.9259 1.34033
\(680\) 0 0
\(681\) 58.8087 2.25356
\(682\) −2.09491 −0.0802183
\(683\) 36.1772 1.38428 0.692142 0.721762i \(-0.256667\pi\)
0.692142 + 0.721762i \(0.256667\pi\)
\(684\) 12.9715 0.495977
\(685\) 0 0
\(686\) −4.09746 −0.156442
\(687\) −50.6116 −1.93095
\(688\) −6.15335 −0.234594
\(689\) 10.1529 0.386795
\(690\) 0 0
\(691\) 44.3403 1.68678 0.843392 0.537299i \(-0.180555\pi\)
0.843392 + 0.537299i \(0.180555\pi\)
\(692\) −16.0301 −0.609374
\(693\) 15.4522 0.586979
\(694\) −2.56308 −0.0972932
\(695\) 0 0
\(696\) 7.61946 0.288815
\(697\) 43.4847 1.64710
\(698\) 4.29918 0.162726
\(699\) 71.3111 2.69723
\(700\) 0 0
\(701\) −19.4759 −0.735594 −0.367797 0.929906i \(-0.619888\pi\)
−0.367797 + 0.929906i \(0.619888\pi\)
\(702\) −9.94326 −0.375284
\(703\) −5.06393 −0.190990
\(704\) 7.00681 0.264079
\(705\) 0 0
\(706\) −2.33193 −0.0877632
\(707\) −1.08638 −0.0408575
\(708\) 28.2987 1.06353
\(709\) 34.6294 1.30053 0.650266 0.759706i \(-0.274657\pi\)
0.650266 + 0.759706i \(0.274657\pi\)
\(710\) 0 0
\(711\) −80.3290 −3.01257
\(712\) −1.03870 −0.0389268
\(713\) 84.2039 3.15346
\(714\) −9.96588 −0.372964
\(715\) 0 0
\(716\) 25.5106 0.953376
\(717\) −53.6084 −2.00204
\(718\) 0.738612 0.0275648
\(719\) −38.7823 −1.44633 −0.723167 0.690673i \(-0.757314\pi\)
−0.723167 + 0.690673i \(0.757314\pi\)
\(720\) 0 0
\(721\) 29.7992 1.10978
\(722\) −0.205229 −0.00763782
\(723\) 41.6536 1.54911
\(724\) 26.6781 0.991485
\(725\) 0 0
\(726\) −0.636714 −0.0236307
\(727\) 11.1719 0.414343 0.207171 0.978305i \(-0.433574\pi\)
0.207171 + 0.978305i \(0.433574\pi\)
\(728\) −8.16077 −0.302458
\(729\) −5.18189 −0.191922
\(730\) 0 0
\(731\) 11.0147 0.407395
\(732\) −54.2869 −2.00650
\(733\) 34.8431 1.28696 0.643479 0.765464i \(-0.277490\pi\)
0.643479 + 0.765464i \(0.277490\pi\)
\(734\) 4.68581 0.172956
\(735\) 0 0
\(736\) 19.7479 0.727918
\(737\) 13.2994 0.489891
\(738\) 8.81035 0.324314
\(739\) 32.1054 1.18102 0.590508 0.807032i \(-0.298928\pi\)
0.590508 + 0.807032i \(0.298928\pi\)
\(740\) 0 0
\(741\) −13.3644 −0.490955
\(742\) 1.12816 0.0414161
\(743\) 27.4635 1.00754 0.503769 0.863838i \(-0.331946\pi\)
0.503769 + 0.863838i \(0.331946\pi\)
\(744\) −25.7238 −0.943079
\(745\) 0 0
\(746\) −2.99579 −0.109684
\(747\) 118.375 4.33110
\(748\) −13.1393 −0.480419
\(749\) 8.90776 0.325483
\(750\) 0 0
\(751\) −13.0173 −0.475007 −0.237504 0.971387i \(-0.576329\pi\)
−0.237504 + 0.971387i \(0.576329\pi\)
\(752\) 30.5771 1.11503
\(753\) 3.73606 0.136150
\(754\) −2.67300 −0.0973451
\(755\) 0 0
\(756\) 51.3593 1.86792
\(757\) −7.87306 −0.286151 −0.143076 0.989712i \(-0.545699\pi\)
−0.143076 + 0.989712i \(0.545699\pi\)
\(758\) −2.43619 −0.0884864
\(759\) 25.5924 0.928946
\(760\) 0 0
\(761\) 49.9368 1.81021 0.905104 0.425189i \(-0.139792\pi\)
0.905104 + 0.425189i \(0.139792\pi\)
\(762\) −4.42806 −0.160412
\(763\) −21.3285 −0.772144
\(764\) −5.63753 −0.203959
\(765\) 0 0
\(766\) 2.58764 0.0934953
\(767\) −20.0687 −0.724638
\(768\) 39.5126 1.42579
\(769\) 20.1374 0.726173 0.363086 0.931755i \(-0.381723\pi\)
0.363086 + 0.931755i \(0.381723\pi\)
\(770\) 0 0
\(771\) 53.2113 1.91636
\(772\) 45.6322 1.64234
\(773\) −6.99436 −0.251570 −0.125785 0.992058i \(-0.540145\pi\)
−0.125785 + 0.992058i \(0.540145\pi\)
\(774\) 2.23167 0.0802158
\(775\) 0 0
\(776\) −12.1636 −0.436648
\(777\) −36.6421 −1.31453
\(778\) −7.26129 −0.260330
\(779\) 6.47966 0.232158
\(780\) 0 0
\(781\) 8.76859 0.313765
\(782\) −11.3613 −0.406279
\(783\) 34.0066 1.21530
\(784\) −5.84979 −0.208921
\(785\) 0 0
\(786\) 7.86620 0.280578
\(787\) −49.1498 −1.75200 −0.876000 0.482311i \(-0.839797\pi\)
−0.876000 + 0.482311i \(0.839797\pi\)
\(788\) −42.0768 −1.49892
\(789\) −20.5061 −0.730036
\(790\) 0 0
\(791\) 3.62390 0.128851
\(792\) −5.38151 −0.191224
\(793\) 38.4988 1.36713
\(794\) −0.750831 −0.0266460
\(795\) 0 0
\(796\) 23.2190 0.822974
\(797\) −29.6783 −1.05126 −0.525630 0.850713i \(-0.676170\pi\)
−0.525630 + 0.850713i \(0.676170\pi\)
\(798\) −1.48501 −0.0525689
\(799\) −54.7341 −1.93635
\(800\) 0 0
\(801\) −8.47209 −0.299347
\(802\) −1.60224 −0.0565769
\(803\) −2.66639 −0.0940947
\(804\) 80.7841 2.84904
\(805\) 0 0
\(806\) 9.02422 0.317865
\(807\) −8.86449 −0.312045
\(808\) 0.378352 0.0133104
\(809\) 11.9905 0.421562 0.210781 0.977533i \(-0.432399\pi\)
0.210781 + 0.977533i \(0.432399\pi\)
\(810\) 0 0
\(811\) −17.0389 −0.598318 −0.299159 0.954203i \(-0.596706\pi\)
−0.299159 + 0.954203i \(0.596706\pi\)
\(812\) 13.8067 0.484520
\(813\) −3.97890 −0.139546
\(814\) 1.03926 0.0364262
\(815\) 0 0
\(816\) −78.0574 −2.73255
\(817\) 1.64130 0.0574220
\(818\) −3.82087 −0.133594
\(819\) −66.5632 −2.32590
\(820\) 0 0
\(821\) −4.91990 −0.171706 −0.0858529 0.996308i \(-0.527362\pi\)
−0.0858529 + 0.996308i \(0.527362\pi\)
\(822\) −3.27813 −0.114338
\(823\) −14.9864 −0.522392 −0.261196 0.965286i \(-0.584117\pi\)
−0.261196 + 0.965286i \(0.584117\pi\)
\(824\) −10.3781 −0.361539
\(825\) 0 0
\(826\) −2.22997 −0.0775905
\(827\) −18.0947 −0.629213 −0.314607 0.949222i \(-0.601873\pi\)
−0.314607 + 0.949222i \(0.601873\pi\)
\(828\) 107.003 3.71860
\(829\) −20.2361 −0.702827 −0.351414 0.936220i \(-0.614299\pi\)
−0.351414 + 0.936220i \(0.614299\pi\)
\(830\) 0 0
\(831\) −50.4126 −1.74880
\(832\) −30.1832 −1.04641
\(833\) 10.4713 0.362810
\(834\) 4.11346 0.142437
\(835\) 0 0
\(836\) −1.95788 −0.0677147
\(837\) −114.808 −3.96836
\(838\) −0.894919 −0.0309145
\(839\) −11.4706 −0.396008 −0.198004 0.980201i \(-0.563446\pi\)
−0.198004 + 0.980201i \(0.563446\pi\)
\(840\) 0 0
\(841\) −19.8581 −0.684764
\(842\) −2.83318 −0.0976377
\(843\) −91.4367 −3.14925
\(844\) 24.0367 0.827376
\(845\) 0 0
\(846\) −11.0896 −0.381267
\(847\) −2.33231 −0.0801391
\(848\) 8.83627 0.303439
\(849\) 102.073 3.50315
\(850\) 0 0
\(851\) −41.7727 −1.43195
\(852\) 53.2626 1.82475
\(853\) 48.1136 1.64738 0.823690 0.567040i \(-0.191912\pi\)
0.823690 + 0.567040i \(0.191912\pi\)
\(854\) 4.27786 0.146385
\(855\) 0 0
\(856\) −3.10230 −0.106034
\(857\) −16.5752 −0.566197 −0.283099 0.959091i \(-0.591362\pi\)
−0.283099 + 0.959091i \(0.591362\pi\)
\(858\) 2.74277 0.0936365
\(859\) −8.14570 −0.277928 −0.138964 0.990297i \(-0.544377\pi\)
−0.138964 + 0.990297i \(0.544377\pi\)
\(860\) 0 0
\(861\) 46.8861 1.59788
\(862\) 4.58109 0.156032
\(863\) 2.28140 0.0776597 0.0388298 0.999246i \(-0.487637\pi\)
0.0388298 + 0.999246i \(0.487637\pi\)
\(864\) −26.9254 −0.916021
\(865\) 0 0
\(866\) −6.67582 −0.226853
\(867\) 86.9838 2.95413
\(868\) −46.6122 −1.58212
\(869\) 12.1246 0.411300
\(870\) 0 0
\(871\) −57.2899 −1.94119
\(872\) 7.42805 0.251546
\(873\) −99.2120 −3.35782
\(874\) −1.69295 −0.0572647
\(875\) 0 0
\(876\) −16.1963 −0.547222
\(877\) −31.4497 −1.06198 −0.530991 0.847378i \(-0.678180\pi\)
−0.530991 + 0.847378i \(0.678180\pi\)
\(878\) 2.39822 0.0809360
\(879\) −86.7770 −2.92692
\(880\) 0 0
\(881\) −29.6609 −0.999301 −0.499651 0.866227i \(-0.666538\pi\)
−0.499651 + 0.866227i \(0.666538\pi\)
\(882\) 2.12158 0.0714372
\(883\) −44.7897 −1.50729 −0.753647 0.657279i \(-0.771707\pi\)
−0.753647 + 0.657279i \(0.771707\pi\)
\(884\) 56.5999 1.90366
\(885\) 0 0
\(886\) −5.05522 −0.169833
\(887\) 51.6475 1.73415 0.867077 0.498175i \(-0.165996\pi\)
0.867077 + 0.498175i \(0.165996\pi\)
\(888\) 12.7613 0.428241
\(889\) −16.2202 −0.544007
\(890\) 0 0
\(891\) −15.0183 −0.503134
\(892\) 35.5417 1.19003
\(893\) −8.15593 −0.272928
\(894\) −0.800554 −0.0267745
\(895\) 0 0
\(896\) −14.5208 −0.485104
\(897\) −110.244 −3.68095
\(898\) 0.0558154 0.00186258
\(899\) −30.8635 −1.02935
\(900\) 0 0
\(901\) −15.8173 −0.526949
\(902\) −1.32981 −0.0442779
\(903\) 11.8763 0.395219
\(904\) −1.26209 −0.0419765
\(905\) 0 0
\(906\) 2.22135 0.0737996
\(907\) −24.5110 −0.813874 −0.406937 0.913456i \(-0.633403\pi\)
−0.406937 + 0.913456i \(0.633403\pi\)
\(908\) −37.1126 −1.23163
\(909\) 3.08602 0.102357
\(910\) 0 0
\(911\) 50.0214 1.65728 0.828641 0.559781i \(-0.189115\pi\)
0.828641 + 0.559781i \(0.189115\pi\)
\(912\) −11.6313 −0.385151
\(913\) −17.8672 −0.591316
\(914\) −5.46324 −0.180708
\(915\) 0 0
\(916\) 31.9396 1.05532
\(917\) 28.8142 0.951529
\(918\) 15.4906 0.511267
\(919\) −30.0880 −0.992511 −0.496255 0.868177i \(-0.665292\pi\)
−0.496255 + 0.868177i \(0.665292\pi\)
\(920\) 0 0
\(921\) 2.42934 0.0800496
\(922\) −3.80163 −0.125200
\(923\) −37.7724 −1.24329
\(924\) −14.1670 −0.466061
\(925\) 0 0
\(926\) 3.06107 0.100593
\(927\) −84.6490 −2.78024
\(928\) −7.23825 −0.237607
\(929\) 13.6447 0.447669 0.223834 0.974627i \(-0.428143\pi\)
0.223834 + 0.974627i \(0.428143\pi\)
\(930\) 0 0
\(931\) 1.56033 0.0511379
\(932\) −45.0026 −1.47411
\(933\) −31.1618 −1.02019
\(934\) 5.00963 0.163920
\(935\) 0 0
\(936\) 23.1819 0.757723
\(937\) −18.1311 −0.592318 −0.296159 0.955139i \(-0.595706\pi\)
−0.296159 + 0.955139i \(0.595706\pi\)
\(938\) −6.36587 −0.207853
\(939\) 5.60816 0.183015
\(940\) 0 0
\(941\) −48.2974 −1.57445 −0.787224 0.616667i \(-0.788483\pi\)
−0.787224 + 0.616667i \(0.788483\pi\)
\(942\) 4.03830 0.131575
\(943\) 53.4511 1.74061
\(944\) −17.4661 −0.568474
\(945\) 0 0
\(946\) −0.336843 −0.0109517
\(947\) −14.7816 −0.480337 −0.240169 0.970731i \(-0.577203\pi\)
−0.240169 + 0.970731i \(0.577203\pi\)
\(948\) 73.6481 2.39198
\(949\) 11.4860 0.372850
\(950\) 0 0
\(951\) −44.3107 −1.43687
\(952\) 12.7137 0.412053
\(953\) 16.9908 0.550387 0.275193 0.961389i \(-0.411258\pi\)
0.275193 + 0.961389i \(0.411258\pi\)
\(954\) −3.20470 −0.103756
\(955\) 0 0
\(956\) 33.8309 1.09417
\(957\) −9.38045 −0.303227
\(958\) −2.47365 −0.0799200
\(959\) −12.0079 −0.387756
\(960\) 0 0
\(961\) 73.1969 2.36119
\(962\) −4.47683 −0.144339
\(963\) −25.3038 −0.815404
\(964\) −26.2865 −0.846630
\(965\) 0 0
\(966\) −12.2500 −0.394137
\(967\) 27.7887 0.893626 0.446813 0.894627i \(-0.352559\pi\)
0.446813 + 0.894627i \(0.352559\pi\)
\(968\) 0.812271 0.0261074
\(969\) 20.8205 0.668851
\(970\) 0 0
\(971\) 24.0365 0.771367 0.385683 0.922631i \(-0.373966\pi\)
0.385683 + 0.922631i \(0.373966\pi\)
\(972\) −25.1629 −0.807100
\(973\) 15.0678 0.483051
\(974\) 5.64499 0.180877
\(975\) 0 0
\(976\) 33.5062 1.07251
\(977\) 13.6409 0.436412 0.218206 0.975903i \(-0.429980\pi\)
0.218206 + 0.975903i \(0.429980\pi\)
\(978\) −14.9351 −0.477573
\(979\) 1.27875 0.0408692
\(980\) 0 0
\(981\) 60.5867 1.93439
\(982\) −6.78872 −0.216637
\(983\) −7.81613 −0.249296 −0.124648 0.992201i \(-0.539780\pi\)
−0.124648 + 0.992201i \(0.539780\pi\)
\(984\) −16.3290 −0.520549
\(985\) 0 0
\(986\) 4.16428 0.132618
\(987\) −59.0155 −1.87848
\(988\) 8.43395 0.268320
\(989\) 13.5392 0.430522
\(990\) 0 0
\(991\) −44.7494 −1.42151 −0.710756 0.703439i \(-0.751647\pi\)
−0.710756 + 0.703439i \(0.751647\pi\)
\(992\) 24.4368 0.775868
\(993\) −44.9844 −1.42754
\(994\) −4.19714 −0.133125
\(995\) 0 0
\(996\) −108.530 −3.43889
\(997\) −31.3614 −0.993227 −0.496613 0.867972i \(-0.665423\pi\)
−0.496613 + 0.867972i \(0.665423\pi\)
\(998\) −1.96616 −0.0622376
\(999\) 56.9553 1.80199
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5225.2.a.l.1.3 6
5.4 even 2 1045.2.a.f.1.4 6
15.14 odd 2 9405.2.a.z.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.4 6 5.4 even 2
5225.2.a.l.1.3 6 1.1 even 1 trivial
9405.2.a.z.1.3 6 15.14 odd 2