Properties

Label 528.4.a
Level $528$
Weight $4$
Character orbit 528.a
Rep. character $\chi_{528}(1,\cdot)$
Character field $\Q$
Dimension $30$
Newform subspaces $20$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 528 = 2^{4} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 528.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(528))\).

Total New Old
Modular forms 300 30 270
Cusp forms 276 30 246
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(+\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(3\)
Plus space\(+\)\(17\)
Minus space\(-\)\(13\)

Trace form

\( 30 q + 6 q^{3} - 4 q^{5} - 36 q^{7} + 270 q^{9} + 92 q^{13} - 60 q^{15} + 52 q^{17} - 204 q^{19} + 706 q^{25} + 54 q^{27} + 284 q^{29} - 48 q^{31} - 456 q^{35} - 132 q^{37} - 420 q^{39} - 236 q^{41} - 84 q^{43}+ \cdots - 2188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(528))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 11
528.4.a.a 528.a 1.a $1$ $31.153$ \(\Q\) None 33.4.a.a \(0\) \(-3\) \(-14\) \(32\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-14q^{5}+2^{5}q^{7}+9q^{9}+11q^{11}+\cdots\)
528.4.a.b 528.a 1.a $1$ $31.153$ \(\Q\) None 264.4.a.d \(0\) \(-3\) \(-6\) \(8\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-6q^{5}+8q^{7}+9q^{9}+11q^{11}+\cdots\)
528.4.a.c 528.a 1.a $1$ $31.153$ \(\Q\) None 264.4.a.c \(0\) \(-3\) \(-6\) \(14\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-6q^{5}+14q^{7}+9q^{9}-11q^{11}+\cdots\)
528.4.a.d 528.a 1.a $1$ $31.153$ \(\Q\) None 66.4.a.a \(0\) \(-3\) \(0\) \(-14\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-14q^{7}+9q^{9}-11q^{11}+80q^{13}+\cdots\)
528.4.a.e 528.a 1.a $1$ $31.153$ \(\Q\) None 132.4.a.d \(0\) \(-3\) \(10\) \(-8\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+10q^{5}-8q^{7}+9q^{9}+11q^{11}+\cdots\)
528.4.a.f 528.a 1.a $1$ $31.153$ \(\Q\) None 264.4.a.a \(0\) \(3\) \(-18\) \(28\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-18q^{5}+28q^{7}+9q^{9}-11q^{11}+\cdots\)
528.4.a.g 528.a 1.a $1$ $31.153$ \(\Q\) None 132.4.a.a \(0\) \(3\) \(-12\) \(-14\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-12q^{5}-14q^{7}+9q^{9}-11q^{11}+\cdots\)
528.4.a.h 528.a 1.a $1$ $31.153$ \(\Q\) None 33.4.a.b \(0\) \(3\) \(-4\) \(26\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-4q^{5}+26q^{7}+9q^{9}-11q^{11}+\cdots\)
528.4.a.i 528.a 1.a $1$ $31.153$ \(\Q\) None 132.4.a.b \(0\) \(3\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-2q^{7}+9q^{9}+11q^{11}-88q^{13}+\cdots\)
528.4.a.j 528.a 1.a $1$ $31.153$ \(\Q\) None 66.4.a.b \(0\) \(3\) \(10\) \(-16\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+10q^{5}-2^{4}q^{7}+9q^{9}-11q^{11}+\cdots\)
528.4.a.k 528.a 1.a $1$ $31.153$ \(\Q\) None 264.4.a.b \(0\) \(3\) \(12\) \(-22\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+12q^{5}-22q^{7}+9q^{9}-11q^{11}+\cdots\)
528.4.a.l 528.a 1.a $1$ $31.153$ \(\Q\) None 132.4.a.c \(0\) \(3\) \(22\) \(20\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+22q^{5}+20q^{7}+9q^{9}-11q^{11}+\cdots\)
528.4.a.m 528.a 1.a $2$ $31.153$ \(\Q(\sqrt{185}) \) None 264.4.a.g \(0\) \(-6\) \(-6\) \(-22\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+(-3-\beta )q^{5}+(-11+\beta )q^{7}+\cdots\)
528.4.a.n 528.a 1.a $2$ $31.153$ \(\Q(\sqrt{97}) \) None 66.4.a.c \(0\) \(-6\) \(10\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+(5-\beta )q^{5}+(1-3\beta )q^{7}+9q^{9}+\cdots\)
528.4.a.o 528.a 1.a $2$ $31.153$ \(\Q(\sqrt{33}) \) None 33.4.a.d \(0\) \(-6\) \(16\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+(8+2\beta )q^{5}+(-1-\beta )q^{7}+\cdots\)
528.4.a.p 528.a 1.a $2$ $31.153$ \(\Q(\sqrt{97}) \) None 33.4.a.c \(0\) \(6\) \(-14\) \(-24\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+(-7-\beta )q^{5}+(-12+2\beta )q^{7}+\cdots\)
528.4.a.q 528.a 1.a $2$ $31.153$ \(\Q(\sqrt{137}) \) None 264.4.a.f \(0\) \(6\) \(-6\) \(-16\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+(-3-\beta )q^{5}+(-8-2\beta )q^{7}+\cdots\)
528.4.a.r 528.a 1.a $2$ $31.153$ \(\Q(\sqrt{17}) \) None 264.4.a.e \(0\) \(6\) \(-6\) \(-10\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+(-3-\beta )q^{5}+(-5-\beta )q^{7}+\cdots\)
528.4.a.s 528.a 1.a $3$ $31.153$ 3.3.123209.1 None 264.4.a.i \(0\) \(-9\) \(4\) \(-28\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+(1-\beta _{1})q^{5}+(-10-\beta _{1}-\beta _{2})q^{7}+\cdots\)
528.4.a.t 528.a 1.a $3$ $31.153$ 3.3.142161.1 None 264.4.a.h \(0\) \(9\) \(4\) \(12\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+(1-\beta _{1})q^{5}+(4-\beta _{2})q^{7}+9q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(528))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(528)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 2}\)