Defining parameters
Level: | \( N \) | \(=\) | \( 528 = 2^{4} \cdot 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 528.bj (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 88 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(528, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1184 | 0 | 1184 |
Cusp forms | 1120 | 0 | 1120 |
Eisenstein series | 64 | 0 | 64 |
Decomposition of \(S_{4}^{\mathrm{old}}(528, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(528, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 2}\)