Defining parameters
Level: | \( N \) | \(=\) | \( 532 = 2^{2} \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 532.cj (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 133 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(160\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(532, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 516 | 78 | 438 |
Cusp forms | 444 | 78 | 366 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(532, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
532.2.cj.a | $78$ | $4.248$ | None | \(0\) | \(0\) | \(0\) | \(6\) |
Decomposition of \(S_{2}^{\mathrm{old}}(532, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(532, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(266, [\chi])\)\(^{\oplus 2}\)