Properties

Label 532.2.cj
Level $532$
Weight $2$
Character orbit 532.cj
Rep. character $\chi_{532}(33,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $78$
Newform subspaces $1$
Sturm bound $160$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 532 = 2^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 532.cj (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(160\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(532, [\chi])\).

Total New Old
Modular forms 516 78 438
Cusp forms 444 78 366
Eisenstein series 72 0 72

Trace form

\( 78 q + 6 q^{7} - 6 q^{11} + 6 q^{13} - 3 q^{15} + 27 q^{17} + 21 q^{19} - 3 q^{21} - 24 q^{23} + 12 q^{27} - 18 q^{29} + 33 q^{35} + 36 q^{37} - 18 q^{39} - 18 q^{41} - 48 q^{43} - 18 q^{45} - 18 q^{49}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(532, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
532.2.cj.a 532.cj 133.af $78$ $4.248$ None 532.2.bw.a \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(532, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(532, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(266, [\chi])\)\(^{\oplus 2}\)