Properties

Label 538.6.a
Level $538$
Weight $6$
Character orbit 538.a
Rep. character $\chi_{538}(1,\cdot)$
Character field $\Q$
Dimension $113$
Newform subspaces $4$
Sturm bound $405$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(405\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(538))\).

Total New Old
Modular forms 339 113 226
Cusp forms 335 113 222
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(269\)FrickeDim
\(+\)\(+\)\(+\)\(30\)
\(+\)\(-\)\(-\)\(27\)
\(-\)\(+\)\(-\)\(32\)
\(-\)\(-\)\(+\)\(24\)
Plus space\(+\)\(54\)
Minus space\(-\)\(59\)

Trace form

\( 113 q - 4 q^{2} + 4 q^{3} + 1808 q^{4} - 44 q^{5} - 8 q^{6} - 76 q^{7} - 64 q^{8} + 9059 q^{9} - 200 q^{10} + 598 q^{11} + 64 q^{12} + 48 q^{13} + 880 q^{14} + 28 q^{15} + 28928 q^{16} - 350 q^{17} - 3892 q^{18}+ \cdots + 230226 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(538))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 269
538.6.a.a 538.a 1.a $24$ $86.286$ None 538.6.a.a \(96\) \(-31\) \(-261\) \(-356\) $-$ $-$ $\mathrm{SU}(2)$
538.6.a.b 538.a 1.a $27$ $86.286$ None 538.6.a.b \(-108\) \(33\) \(139\) \(-25\) $+$ $-$ $\mathrm{SU}(2)$
538.6.a.c 538.a 1.a $30$ $86.286$ None 538.6.a.c \(-120\) \(-30\) \(-136\) \(-123\) $+$ $+$ $\mathrm{SU}(2)$
538.6.a.d 538.a 1.a $32$ $86.286$ None 538.6.a.d \(128\) \(32\) \(214\) \(428\) $-$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(538))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(538)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 2}\)