Defining parameters
Level: | \( N \) | \(=\) | \( 538 = 2 \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 538.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(405\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(538))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 339 | 113 | 226 |
Cusp forms | 335 | 113 | 222 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(269\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(30\) |
\(+\) | \(-\) | \(-\) | \(27\) |
\(-\) | \(+\) | \(-\) | \(32\) |
\(-\) | \(-\) | \(+\) | \(24\) |
Plus space | \(+\) | \(54\) | |
Minus space | \(-\) | \(59\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(538))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 269 | |||||||
538.6.a.a | $24$ | $86.286$ | None | \(96\) | \(-31\) | \(-261\) | \(-356\) | $-$ | $-$ | |||
538.6.a.b | $27$ | $86.286$ | None | \(-108\) | \(33\) | \(139\) | \(-25\) | $+$ | $-$ | |||
538.6.a.c | $30$ | $86.286$ | None | \(-120\) | \(-30\) | \(-136\) | \(-123\) | $+$ | $+$ | |||
538.6.a.d | $32$ | $86.286$ | None | \(128\) | \(32\) | \(214\) | \(428\) | $-$ | $+$ |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(538))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(538)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 2}\)