Properties

Label 538.8.a
Level 538538
Weight 88
Character orbit 538.a
Rep. character χ538(1,)\chi_{538}(1,\cdot)
Character field Q\Q
Dimension 155155
Newform subspaces 44
Sturm bound 540540
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 538=2269 538 = 2 \cdot 269
Weight: k k == 8 8
Character orbit: [χ][\chi] == 538.a (trivial)
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 540540
Trace bound: 11

Dimensions

The following table gives the dimensions of various subspaces of M8(Γ0(538))M_{8}(\Gamma_0(538)).

Total New Old
Modular forms 475 155 320
Cusp forms 471 155 316
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22269269FrickeDim
++++++3737
++--4040
-++-3535
--++4343
Plus space++8080
Minus space-7575

Trace form

155q+8q2+28q3+9920q44q5+688q6684q7+512q8+111257q9+2000q107482q11+1792q123424q138992q14+32188q15+634880q16+9954846q99+O(q100) 155 q + 8 q^{2} + 28 q^{3} + 9920 q^{4} - 4 q^{5} + 688 q^{6} - 684 q^{7} + 512 q^{8} + 111257 q^{9} + 2000 q^{10} - 7482 q^{11} + 1792 q^{12} - 3424 q^{13} - 8992 q^{14} + 32188 q^{15} + 634880 q^{16}+ \cdots - 9954846 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(Γ0(538))S_{8}^{\mathrm{new}}(\Gamma_0(538)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 269
538.8.a.a 538.a 1.a 3535 168.063168.063 None 538.8.a.a 280280 66-66 1126-1126 3196-3196 - ++ SU(2)\mathrm{SU}(2)
538.8.a.b 538.a 1.a 3737 168.063168.063 None 538.8.a.b 296-296 8080 624624 453453 ++ ++ SU(2)\mathrm{SU}(2)
538.8.a.c 538.a 1.a 4040 168.063168.063 None 538.8.a.c 320-320 109-109 751-751 233-233 ++ - SU(2)\mathrm{SU}(2)
538.8.a.d 538.a 1.a 4343 168.063168.063 None 538.8.a.d 344344 123123 12491249 22922292 - - SU(2)\mathrm{SU}(2)

Decomposition of S8old(Γ0(538))S_{8}^{\mathrm{old}}(\Gamma_0(538)) into lower level spaces

S8old(Γ0(538)) S_{8}^{\mathrm{old}}(\Gamma_0(538)) \simeq S8new(Γ0(2))S_{8}^{\mathrm{new}}(\Gamma_0(2))2^{\oplus 2}\oplusS8new(Γ0(269))S_{8}^{\mathrm{new}}(\Gamma_0(269))2^{\oplus 2}