Properties

Label 538.8.a
Level $538$
Weight $8$
Character orbit 538.a
Rep. character $\chi_{538}(1,\cdot)$
Character field $\Q$
Dimension $155$
Newform subspaces $4$
Sturm bound $540$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(540\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(538))\).

Total New Old
Modular forms 475 155 320
Cusp forms 471 155 316
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(269\)FrickeDim
\(+\)\(+\)\(+\)\(37\)
\(+\)\(-\)\(-\)\(40\)
\(-\)\(+\)\(-\)\(35\)
\(-\)\(-\)\(+\)\(43\)
Plus space\(+\)\(80\)
Minus space\(-\)\(75\)

Trace form

\( 155 q + 8 q^{2} + 28 q^{3} + 9920 q^{4} - 4 q^{5} + 688 q^{6} - 684 q^{7} + 512 q^{8} + 111257 q^{9} + 2000 q^{10} - 7482 q^{11} + 1792 q^{12} - 3424 q^{13} - 8992 q^{14} + 32188 q^{15} + 634880 q^{16}+ \cdots - 9954846 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(538))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 269
538.8.a.a 538.a 1.a $35$ $168.063$ None 538.8.a.a \(280\) \(-66\) \(-1126\) \(-3196\) $-$ $+$ $\mathrm{SU}(2)$
538.8.a.b 538.a 1.a $37$ $168.063$ None 538.8.a.b \(-296\) \(80\) \(624\) \(453\) $+$ $+$ $\mathrm{SU}(2)$
538.8.a.c 538.a 1.a $40$ $168.063$ None 538.8.a.c \(-320\) \(-109\) \(-751\) \(-233\) $+$ $-$ $\mathrm{SU}(2)$
538.8.a.d 538.a 1.a $43$ $168.063$ None 538.8.a.d \(344\) \(123\) \(1249\) \(2292\) $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(538))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(538)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 2}\)