Defining parameters
Level: | \( N \) | \(=\) | \( 538 = 2 \cdot 269 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 538.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(540\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(538))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 475 | 155 | 320 |
Cusp forms | 471 | 155 | 316 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(269\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(37\) |
\(+\) | \(-\) | \(-\) | \(40\) |
\(-\) | \(+\) | \(-\) | \(35\) |
\(-\) | \(-\) | \(+\) | \(43\) |
Plus space | \(+\) | \(80\) | |
Minus space | \(-\) | \(75\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(538))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 269 | |||||||
538.8.a.a | $35$ | $168.063$ | None | \(280\) | \(-66\) | \(-1126\) | \(-3196\) | $-$ | $+$ | |||
538.8.a.b | $37$ | $168.063$ | None | \(-296\) | \(80\) | \(624\) | \(453\) | $+$ | $+$ | |||
538.8.a.c | $40$ | $168.063$ | None | \(-320\) | \(-109\) | \(-751\) | \(-233\) | $+$ | $-$ | |||
538.8.a.d | $43$ | $168.063$ | None | \(344\) | \(123\) | \(1249\) | \(2292\) | $-$ | $-$ |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(538))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(538)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(269))\)\(^{\oplus 2}\)