Properties

Label 54.2
Level 54
Weight 2
Dimension 22
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 324
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(324\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(54))\).

Total New Old
Modular forms 111 22 89
Cusp forms 52 22 30
Eisenstein series 59 0 59

Trace form

\( 22 q + q^{2} + q^{4} - 6 q^{5} - 6 q^{6} - 4 q^{7} - 5 q^{8} - 12 q^{9} - 6 q^{10} - 18 q^{11} - 3 q^{12} - 10 q^{13} - 4 q^{14} - 18 q^{15} + q^{16} - 6 q^{17} + 6 q^{18} + 2 q^{19} + 12 q^{20} + 24 q^{21}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
54.2.a \(\chi_{54}(1, \cdot)\) 54.2.a.a 1 1
54.2.a.b 1
54.2.c \(\chi_{54}(19, \cdot)\) 54.2.c.a 2 2
54.2.e \(\chi_{54}(7, \cdot)\) 54.2.e.a 6 6
54.2.e.b 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(54))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(54)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 1}\)