Properties

Label 54.9
Level 54
Weight 9
Dimension 170
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 1458
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(1458\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(54))\).

Total New Old
Modular forms 678 170 508
Cusp forms 618 170 448
Eisenstein series 60 0 60

Trace form

\( 170 q - 256 q^{4} + 1764 q^{5} + 768 q^{6} - 5504 q^{7} + 25908 q^{9} + 8448 q^{10} - 91512 q^{11} - 21504 q^{12} + 67720 q^{13} + 188928 q^{14} - 70002 q^{15} + 32768 q^{16} - 182784 q^{18} + 364486 q^{19}+ \cdots + 26756370 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(54))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
54.9.b \(\chi_{54}(53, \cdot)\) 54.9.b.a 2 1
54.9.b.b 4
54.9.b.c 4
54.9.d \(\chi_{54}(17, \cdot)\) 54.9.d.a 16 2
54.9.f \(\chi_{54}(5, \cdot)\) 54.9.f.a 144 6

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(54))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(54)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 1}\)