Properties

Label 540.2.x
Level 540540
Weight 22
Character orbit 540.x
Rep. character χ540(17,)\chi_{540}(17,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 2424
Newform subspaces 11
Sturm bound 216216
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 540=22335 540 = 2^{2} \cdot 3^{3} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 540.x (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 45 45
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 1 1
Sturm bound: 216216
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(540,[χ])M_{2}(540, [\chi]).

Total New Old
Modular forms 504 24 480
Cusp forms 360 24 336
Eisenstein series 144 0 144

Trace form

24q12q11+24q23+6q25+12q37+36q41+42q47+12q5512q61+24q65+6q6796q7760q8324q8524q9160q9518q97+O(q100) 24 q - 12 q^{11} + 24 q^{23} + 6 q^{25} + 12 q^{37} + 36 q^{41} + 42 q^{47} + 12 q^{55} - 12 q^{61} + 24 q^{65} + 6 q^{67} - 96 q^{77} - 60 q^{83} - 24 q^{85} - 24 q^{91} - 60 q^{95} - 18 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(540,[χ])S_{2}^{\mathrm{new}}(540, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
540.2.x.a 540.x 45.l 2424 4.3124.312 None 180.2.w.a 00 00 00 00 SU(2)[C12]\mathrm{SU}(2)[C_{12}]

Decomposition of S2old(540,[χ])S_{2}^{\mathrm{old}}(540, [\chi]) into lower level spaces

S2old(540,[χ]) S_{2}^{\mathrm{old}}(540, [\chi]) \simeq S2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])6^{\oplus 6}\oplusS2new(90,[χ])S_{2}^{\mathrm{new}}(90, [\chi])4^{\oplus 4}\oplusS2new(135,[χ])S_{2}^{\mathrm{new}}(135, [\chi])3^{\oplus 3}\oplusS2new(180,[χ])S_{2}^{\mathrm{new}}(180, [\chi])2^{\oplus 2}\oplusS2new(270,[χ])S_{2}^{\mathrm{new}}(270, [\chi])2^{\oplus 2}