Properties

Label 540.2.x
Level $540$
Weight $2$
Character orbit 540.x
Rep. character $\chi_{540}(17,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $24$
Newform subspaces $1$
Sturm bound $216$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.x (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 45 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(540, [\chi])\).

Total New Old
Modular forms 504 24 480
Cusp forms 360 24 336
Eisenstein series 144 0 144

Trace form

\( 24 q - 12 q^{11} + 24 q^{23} + 6 q^{25} + 12 q^{37} + 36 q^{41} + 42 q^{47} + 12 q^{55} - 12 q^{61} + 24 q^{65} + 6 q^{67} - 96 q^{77} - 60 q^{83} - 24 q^{85} - 24 q^{91} - 60 q^{95} - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(540, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
540.2.x.a 540.x 45.l $24$ $4.312$ None 180.2.w.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(540, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(540, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)