Properties

Label 546.2.bq
Level $546$
Weight $2$
Character orbit 546.bq
Rep. character $\chi_{546}(419,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $72$
Newform subspaces $3$
Sturm bound $224$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bq (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 273 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(224\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(5\), \(61\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(546, [\chi])\).

Total New Old
Modular forms 240 72 168
Cusp forms 208 72 136
Eisenstein series 32 0 32

Trace form

\( 72 q + 36 q^{4} + 8 q^{7} + 4 q^{9} + 12 q^{15} - 36 q^{16} - 24 q^{18} + 16 q^{21} + 56 q^{25} - 8 q^{28} + 8 q^{30} - 4 q^{36} - 16 q^{37} - 48 q^{39} + 8 q^{42} - 12 q^{43} - 4 q^{46} + 4 q^{49} + 16 q^{51}+ \cdots - 56 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(546, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
546.2.bq.a 546.bq 273.an $4$ $4.360$ \(\Q(\zeta_{12})\) None 546.2.bq.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(-\zeta_{12}+2\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
546.2.bq.b 546.bq 273.an $4$ $4.360$ \(\Q(\zeta_{12})\) None 546.2.bq.a \(0\) \(0\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{2}+(\zeta_{12}-2\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\)
546.2.bq.c 546.bq 273.an $64$ $4.360$ None 546.2.bq.c \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(546, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(546, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)