Defining parameters
Level: | \( N \) | \(=\) | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 546.bq (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 273 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(5\), \(61\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(546, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 240 | 72 | 168 |
Cusp forms | 208 | 72 | 136 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(546, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
546.2.bq.a | $4$ | $4.360$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(2\) | \(q+\zeta_{12}q^{2}+(-\zeta_{12}+2\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
546.2.bq.b | $4$ | $4.360$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(-10\) | \(q+\zeta_{12}q^{2}+(\zeta_{12}-2\zeta_{12}^{3})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
546.2.bq.c | $64$ | $4.360$ | None | \(0\) | \(0\) | \(0\) | \(16\) |
Decomposition of \(S_{2}^{\mathrm{old}}(546, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(546, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)