Defining parameters
Level: | \( N \) | \(=\) | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 546.j (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 91 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(546, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 240 | 36 | 204 |
Cusp forms | 208 | 36 | 172 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(546, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
546.2.j.a | $2$ | $4.360$ | \(\Q(\sqrt{-3}) \) | None | \(2\) | \(1\) | \(0\) | \(1\) | \(q+q^{2}+\zeta_{6}q^{3}+q^{4}+\zeta_{6}q^{6}+(2-3\zeta_{6})q^{7}+\cdots\) |
546.2.j.b | $8$ | $4.360$ | 8.0.6498455769.2 | None | \(-8\) | \(-4\) | \(-2\) | \(3\) | \(q-q^{2}-\beta _{4}q^{3}+q^{4}+\beta _{2}q^{5}+\beta _{4}q^{6}+\cdots\) |
546.2.j.c | $8$ | $4.360$ | 8.0.447703281.1 | None | \(8\) | \(-4\) | \(2\) | \(3\) | \(q+q^{2}+(-1+\beta _{2})q^{3}+q^{4}+(1-\beta _{2}+\cdots)q^{5}+\cdots\) |
546.2.j.d | $8$ | $4.360$ | 8.0.447703281.1 | None | \(8\) | \(4\) | \(2\) | \(-3\) | \(q+q^{2}-\beta _{3}q^{3}+q^{4}+(2\beta _{1}+2\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots\) |
546.2.j.e | $10$ | $4.360$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(-10\) | \(5\) | \(-2\) | \(-2\) | \(q-q^{2}+(1+\beta _{5})q^{3}+q^{4}-\beta _{1}q^{5}+(-1+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(546, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(546, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)