Properties

Label 5488.2
Level 5488
Weight 2
Dimension 495720
Nonzero newspaces 24
Sturm bound 3687936

Downloads

Learn more

Defining parameters

Level: N N = 5488=2473 5488 = 2^{4} \cdot 7^{3}
Weight: k k = 2 2
Nonzero newspaces: 24 24
Sturm bound: 36879363687936

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(5488))M_{2}(\Gamma_1(5488)).

Total New Old
Modular forms 929628 499608 430020
Cusp forms 914341 495720 418621
Eisenstein series 15287 3888 11399

Decomposition of S2new(Γ1(5488))S_{2}^{\mathrm{new}}(\Gamma_1(5488))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
5488.2.a χ5488(1,)\chi_{5488}(1, \cdot) 5488.2.a.a 3 1
5488.2.a.b 3
5488.2.a.c 3
5488.2.a.d 3
5488.2.a.e 3
5488.2.a.f 3
5488.2.a.g 6
5488.2.a.h 6
5488.2.a.i 6
5488.2.a.j 6
5488.2.a.k 6
5488.2.a.l 6
5488.2.a.m 6
5488.2.a.n 6
5488.2.a.o 6
5488.2.a.p 6
5488.2.a.q 6
5488.2.a.r 9
5488.2.a.s 9
5488.2.a.t 9
5488.2.a.u 9
5488.2.a.v 12
5488.2.a.w 12
5488.2.b χ5488(2745,)\chi_{5488}(2745, \cdot) None 0 1
5488.2.e χ5488(2743,)\chi_{5488}(2743, \cdot) None 0 1
5488.2.f χ5488(5487,)\chi_{5488}(5487, \cdot) n/a 144 1
5488.2.i χ5488(3105,)\chi_{5488}(3105, \cdot) n/a 288 2
5488.2.j χ5488(1371,)\chi_{5488}(1371, \cdot) n/a 1152 2
5488.2.m χ5488(1373,)\chi_{5488}(1373, \cdot) n/a 1152 2
5488.2.p χ5488(1391,)\chi_{5488}(1391, \cdot) n/a 288 2
5488.2.q χ5488(4135,)\chi_{5488}(4135, \cdot) None 0 2
5488.2.t χ5488(361,)\chi_{5488}(361, \cdot) None 0 2
5488.2.u χ5488(785,)\chi_{5488}(785, \cdot) n/a 810 6
5488.2.w χ5488(19,)\chi_{5488}(19, \cdot) n/a 2304 4
5488.2.x χ5488(1733,)\chi_{5488}(1733, \cdot) n/a 2304 4
5488.2.bb χ5488(783,)\chi_{5488}(783, \cdot) n/a 840 6
5488.2.bc χ5488(391,)\chi_{5488}(391, \cdot) None 0 6
5488.2.bf χ5488(393,)\chi_{5488}(393, \cdot) None 0 6
5488.2.bg χ5488(177,)\chi_{5488}(177, \cdot) n/a 1620 12
5488.2.bh χ5488(197,)\chi_{5488}(197, \cdot) n/a 6600 12
5488.2.bk χ5488(195,)\chi_{5488}(195, \cdot) n/a 6600 12
5488.2.bl χ5488(569,)\chi_{5488}(569, \cdot) None 0 12
5488.2.bo χ5488(215,)\chi_{5488}(215, \cdot) None 0 12
5488.2.bp χ5488(31,)\chi_{5488}(31, \cdot) n/a 1680 12
5488.2.bs χ5488(113,)\chi_{5488}(113, \cdot) n/a 8190 42
5488.2.bu χ5488(165,)\chi_{5488}(165, \cdot) n/a 13200 24
5488.2.bv χ5488(227,)\chi_{5488}(227, \cdot) n/a 13200 24
5488.2.bx χ5488(55,)\chi_{5488}(55, \cdot) None 0 42
5488.2.by χ5488(57,)\chi_{5488}(57, \cdot) None 0 42
5488.2.cb χ5488(111,)\chi_{5488}(111, \cdot) n/a 8232 42
5488.2.ce χ5488(65,)\chi_{5488}(65, \cdot) n/a 16380 84
5488.2.cf χ5488(29,)\chi_{5488}(29, \cdot) n/a 65688 84
5488.2.cg χ5488(27,)\chi_{5488}(27, \cdot) n/a 65688 84
5488.2.cl χ5488(47,)\chi_{5488}(47, \cdot) n/a 16464 84
5488.2.co χ5488(9,)\chi_{5488}(9, \cdot) None 0 84
5488.2.cp χ5488(87,)\chi_{5488}(87, \cdot) None 0 84
5488.2.cs χ5488(3,)\chi_{5488}(3, \cdot) n/a 131376 168
5488.2.ct χ5488(37,)\chi_{5488}(37, \cdot) n/a 131376 168

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(5488))S_{2}^{\mathrm{old}}(\Gamma_1(5488)) into lower level spaces

S2old(Γ1(5488)) S_{2}^{\mathrm{old}}(\Gamma_1(5488)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))20^{\oplus 20}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))16^{\oplus 16}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS2new(Γ1(7))S_{2}^{\mathrm{new}}(\Gamma_1(7))15^{\oplus 15}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))8^{\oplus 8}\oplusS2new(Γ1(14))S_{2}^{\mathrm{new}}(\Gamma_1(14))12^{\oplus 12}\oplusS2new(Γ1(16))S_{2}^{\mathrm{new}}(\Gamma_1(16))4^{\oplus 4}\oplusS2new(Γ1(28))S_{2}^{\mathrm{new}}(\Gamma_1(28))9^{\oplus 9}\oplusS2new(Γ1(49))S_{2}^{\mathrm{new}}(\Gamma_1(49))10^{\oplus 10}\oplusS2new(Γ1(56))S_{2}^{\mathrm{new}}(\Gamma_1(56))6^{\oplus 6}\oplusS2new(Γ1(98))S_{2}^{\mathrm{new}}(\Gamma_1(98))8^{\oplus 8}\oplusS2new(Γ1(112))S_{2}^{\mathrm{new}}(\Gamma_1(112))3^{\oplus 3}\oplusS2new(Γ1(196))S_{2}^{\mathrm{new}}(\Gamma_1(196))6^{\oplus 6}\oplusS2new(Γ1(343))S_{2}^{\mathrm{new}}(\Gamma_1(343))5^{\oplus 5}\oplusS2new(Γ1(392))S_{2}^{\mathrm{new}}(\Gamma_1(392))4^{\oplus 4}\oplusS2new(Γ1(686))S_{2}^{\mathrm{new}}(\Gamma_1(686))4^{\oplus 4}\oplusS2new(Γ1(784))S_{2}^{\mathrm{new}}(\Gamma_1(784))2^{\oplus 2}\oplusS2new(Γ1(1372))S_{2}^{\mathrm{new}}(\Gamma_1(1372))3^{\oplus 3}\oplusS2new(Γ1(2744))S_{2}^{\mathrm{new}}(\Gamma_1(2744))2^{\oplus 2}