Defining parameters
Level: | \( N \) | = | \( 55 = 5 \cdot 11 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(55))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 135 | 25 |
Cusp forms | 81 | 79 | 2 |
Eisenstein series | 79 | 56 | 23 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(55))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(55)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 1}\)