Properties

Label 55.2
Level 55
Weight 2
Dimension 79
Nonzero newspaces 6
Newform subspaces 9
Sturm bound 480
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 55 = 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 9 \)
Sturm bound: \(480\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(55))\).

Total New Old
Modular forms 160 135 25
Cusp forms 81 79 2
Eisenstein series 79 56 23

Trace form

\( 79 q - 13 q^{2} - 14 q^{3} - 17 q^{4} - 16 q^{5} - 32 q^{6} - 8 q^{7} - 5 q^{8} - 3 q^{9} - 3 q^{10} - 31 q^{11} - 8 q^{12} - 14 q^{13} - 4 q^{14} + q^{15} - q^{16} + 2 q^{17} + 11 q^{18} + 13 q^{20}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
55.2.a \(\chi_{55}(1, \cdot)\) 55.2.a.a 1 1
55.2.a.b 2
55.2.b \(\chi_{55}(34, \cdot)\) 55.2.b.a 4 1
55.2.e \(\chi_{55}(32, \cdot)\) 55.2.e.a 4 2
55.2.e.b 4
55.2.g \(\chi_{55}(16, \cdot)\) 55.2.g.a 8 4
55.2.g.b 8
55.2.j \(\chi_{55}(4, \cdot)\) 55.2.j.a 16 4
55.2.l \(\chi_{55}(2, \cdot)\) 55.2.l.a 32 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(55))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(55)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 1}\)